Meta-Analysis of association between single nucleotide polymorphisms with sports injuries in soccer
PDF (Español (España))

Keywords

soccer
injuries
genetic polymorphism
ACTN3
MMP
TIMP
VEFGA

How to Cite

Molano Tobar, N. J., García Vallejo, F., & Montoya Villegas, J. C. (2021). Meta-Analysis of association between single nucleotide polymorphisms with sports injuries in soccer. Médicas UIS, 34(3), 9–18. https://doi.org/10.18273/revmed.v34n3-2021001

Abstract

Introduction: The high incidence of sports injuries in elite athletes is a concern in sports medicine. A broad vision of sport injuries in Colombia and its pathophysiology can be achieved in the scope of genomics, which could respond to numerous sports injuries from the Identification of single nucleotide polymorphism that lead to disabilities that affect the health of athletes and often distance them from the field of play. Objective: To determine the association of single nucleotide polymorphisms in various genes with sports injuries in soccer. Material and methods: We searched in the databases PubMed, ScienceDirect and EBSCO for studies published in the last 6 years to January 2020, including studies in English and Portuguese, corresponding to case-control clinical studies, where the experimental group were soccer practitioners and controls were supposedly healthy people. The final papers were assessed for quality and bias using the Jadad scoring scale or Oxford quality scoring system. From the data obtained, heterogeneity was identified with the I2 test and the Q statistic, for the estimation of the effect in the cohort studies the odds ratio and p value <0.05 were used, obtaining the forest plots of each gen. Results: 10 out of 1928 studies were selected, finding a degree of heterogeneity in all studies, such as the risk of injury to ACNT3 SNP (OR = 0.98, 95% CI 0.64-1.50), MMP (OR = 1.16, 95% CI 0.86 - 1.58, p = 0.33), TIMP2 (OR 1.03 95% CI 0.65-1.63), VEFGA (OR 0.98 95% CI 0.70-1.37). Conclusion: The studies showed moderate heterogeneity with statistical significance for the ACTN3 and TIM SNPs, providing a pathway for future studies that relate to sports injuries. MÉD.UIS.2021;34(3): 9-18.

https://doi.org/10.18273/revmed.v34n3-2021001
PDF (Español (España))

References

Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, et al. Large-scale identification, mapping, and genotyping of singlenucleotide polymorphisms in the human genome. Science. 1998; 280(5366): 1077-82.

Molano-Tobar NJ, Molano-Tobar DX. Fútbol: identidad, pasión, dolor y lesión deportiva. Rev Mov. Cient [Internet]. 2015; 9(2): 23- 32. Available from: http://revistas.iberoamericana.edu.co/index.php/Rmcientifico/.

De Ste Croix M, Lehnert M, Maixnerova E, Zaatar A, Svoboda Z, Botek M, et al. Does maturation influence neuromuscular performance and muscle damage after competitive match-play in youth male soccer players? Eur J Sport Sci. 2019; 19(8): 1130-9.

Berengüí-gil R, Garcés EJ, Hidalgo-Montesinos MD. Características psicológicas asociadas a la incidencia de lesiones en deportistas de modalidades individuales. An Psicol. 2013; 29(3): 674-84.

Zaffagnini S, Grassi A, Muccioli GMM, Tsapralis K, Ricci M, Bragonzoni L, et al. Return to sport after anterior cruciate ligament reconstruction in professional soccer players. Knee [Internet]. 2014; 21(3): 731-5. Available from: http://dx.doi.org/10.1016/j.knee.2014.02.005.

Raya-González J, Nakamura FY, Castillo D, YancI J, Fanchini M. Determining the Relationship Between Internal Load Markers and Non-Contact Injuries in Young Elite Soccer Players. Int J Sports Physiol Perform. 2019; 14(4): 421-5.

Nilsson T, Östenberg AH, Alricsson M. Injury profile among elite male youth soccer players in a Swedish first league. J Exerc Rehabil. 2016; 12(2): 83-9.

Haugen T, Danielsen J, McGhie D, Sandbakk Ø, Ettema G. Kinematic stride cycle asymmetry is not associated with sprint performance and injury prevalence in athletic sprinters. Scand J Med Sci Sport. 2018; 28(3): 1001-8.

Widmann M, Nieß AM, Munz B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sport Med. 2019; 49(4): 509-23.

Camera DM, Smiles WJ, Hawley JA. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med. 2016; 98: 131-43.

Yoon J, Bae M, Kang H, Kim T. Descriptive epidemiology of sports injury and illness during the Rio 2016 Olympic Games: A prospective cohort study for Korean team. Int J Sport Sci Coach. 2018; 13(6): 939-46.

Leventera L, Eekb F, Lames M. Intra-seasonal variation of injury patterns among German Bundesliga soccer players. J Sci Med Sport. 2018;5(1):24-9.

Jayanthi NA, Labella CR, Fischer D, Pasulka J, Dugas LR. Sportsspecialized intensive training and the risk of injury in young athletes: A clinical case-control study. Am J Sports Med. 2015; 43(4): 794-801.

Larruskain JON, Celorrio D, Barrio I, Odriozola A, Gil SM, Fernandez-lopez JR, et al. Genetic Variants and Hamstring Injury in Soccer: An Association and Validation Study. Med Sci Sport Exerc. 2018; 361-8.

Pitsiladis YP, Tanaka M, Eynon N, Bouchard C, North KN, Williams AG, et al. Athlome project consortium: A concerted effort to discover genomic and other “omic” markers of athletic performance. Physiol Genomics. 2016; 48(3): 183-90.

Zhang Q, Cao Y, Chen J, Shen J, Ke D, Wang X, et al. ACTN3 is associated with children’s physical fitness in Han Chinese. Mol Genet Genomics. 2019; 294(1): 47-56.

Figueiredo EA, Loyola LC, Belangero PS, Campos Ribeiro-dos-Santos ÂK, Emanuel Batista Santos S, Cohen C, et al. Rotator Cuff Tear Susceptibility Is Associated With Variants in Genes Involved in Tendon Extracellular Matrix Homeostasis. J Orthop Res. 2020; 38(1): 192-201.

Brazier J, Antrobus M, Stebbings GK, Day SH, Heffernan SM, Cross MJ, et al. Tendon and Ligament Injuries in Elite Rugby: The Potential Genetic Influence. Sports. 2019; 7(6): 138.

Zeng X-T, Liu D-Y, Kwong JSW, Leng W-D, Xia L-Y, Mao M. Meta-Analysis of Association Between Interleukin-1β C-511T Polymorphism and Chronic Periodontitis Susceptibility. J Periodontol. 2015; 86(6): 812-9.

Pruna R, Artells R. Cómo puede afectar el componente genético la lesionabilidad de los deportistas. Apunt Med l’Esport. 2015; 50(186): 73-8.

Massidda M, Voisin S, Culigioni C, Piras F, Cugia P, Yan X, et al. ACTN3 R577X Polymorphism Is Associated with the Incidence and Severity of Injuries in Professional Football Players. Clin J Sport Med. 2019; 29(1): 57-61.

Moreno V, Areces F, Ruiz-Vicente D, Ordovás JM, Del Coso J. Influence of the ACTN3 R577X genotype on the injury epidemiology of marathon runners. PLoS One. 2020; 15(1): 1-11.

Delmonico MJ, Kostek MC, Doldo NA, Hand BD, Walsh S, Conway JM, et al. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J Gerontol Med Sci. 2007; 62(2): 206-12.

Orysiak J, Busko K, Michalski R, Mazur-Rózycka J, Gajewski J, Malczewska-Lenczowska J, et al. Relationship between ACTN3 R577x polymorphism and maximal power output in elite polish athletes. Med. 2014; 50(5): 303-8.

Rahim M, Collins M, September A. Genes and Musculoskeletal Soft-Tissue Injuries. Med Sport Sci. 2016; 61: 68-91.

Lambert M, Bastide B, Cieniewski-Bernard C. Involvement of O-GlcNAcylation in the skeletal muscle physiology and physiopathology: Focus on muscle metabolism. Front Endocrinol (Lausanne). 2018; 9: 1-12.

Urrutia G, Bonfill X. Declaracion PRISMA: una propuesta para mejorar la publicacion de revisiones sistematicas y metaanalisis. Med Clin (Barc). 2010; 135(11): 507-11.

Bassini A, Cameron LC. Sportomics: Building a new concept in metabolic studies and exercise science. Biochem Biophys Res Commun. 2014; 445(4): 708-16.

Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ. 2019; 366: 1-8.

Higgins JP, Green S. Manual Cochrane de revisiones sistemáticas de intervenciones. The Cochrane Collaboration. 2011.

Ruaro MB, Batista CV, Knaut SDAM, Dubiela A, Suckow PPT, Ruaro JA, et al. Uso da kinesio taping na dor lombar: revisão sistemática. ConScientiae Saúde. 2014; 13(1): 147-52.

Chen C, Sun Y, Liang H, Yu D, Hu S. A meta-analysis of the association of CKM gene rs8111989 polymorphism with sport performance. Biol Sport. 2017; 34(4): 323-30.

Sarzynski MA, Ghosh S, Bouchard C. Genomic and transcriptomic predictors of response levels to endurance exercise training. J Physiol. 2017; 595(9): 2931-9.

Bouchard C. Exercise genomics-A paradigm shift is needed: A commentary. Br J Sports Med. 2015; 49(23): 1492-6.

Sližik M, Pospieszna B, Gronek J, Sworek R. Are SNIP’s still desirable in sports genomics? Trends Sport Sci [Internet]. 2017; 24(1): 13-8. Disponible en: http://search.ebscohost.com/login.aspx?direct=true&db=s3h&AN=122301110&site=ehost-live.

Sparks LM. Exercise training response heterogeneity: physiological and molecular insights. Diabetologia. 2017; 60(12):2329-36.

Wang C, Li H, Chen K, Wu B, Liu H. Association of polymorphisms rs1800012 in COL1A1 with sports-related tendon and ligament injuries: A meta-analysis. Oncotarget. 2017; 8(16): 27627-34.

Morales-Artacho AJ, Lacourpaille L, Guilhem G. Effects of warmup on hamstring muscles stiffness: Cycling vs foam rolling. Scand J Med Sci Sport. 2017; 27(12): 1959-69.

Nyberg M, Fiorenza M, Lund A, Christensen M, RØmer T, Piil P, et al. Adaptations to speed endurance training in highly trained soccer players. Med Sci Sports Exerc. 2016; 48(7): 1355-64.

Miyamoto N, Miyamoto-Mikami E, Hirata K, Kimura N, Fuku N. Association analysis of the ACTN3 R577X polymorphism with passive muscle stiffness and muscle strain injury. Scand J Med Sci Sport. 2018; 28(3): 1209-14.

Bosnyák E, Trájer E, Udvardy A, Komka Z, Protzner A, Kováts T, et al. ACE and ACTN3 genes polymorphisms among female Hungarian athletes in the aspect of sport disciplines. Acta Physiol Hung. 2015; 102(4): 451-8.

Zietzer A, Buschmann EE, Janke D, Li L, Brix M, Meyborg H, et al. Acute physical exercise and long-term individual shear rate therapy increase telomerase activity in human peripheral blood mononuclear cells. Acta Physiol. 2017; 220(2): 251-62.

Fang M, Yang Y, Li X, Zhou F, Gao C, Li M, et al. The Association of Sport Performance with ACE and ACTN3 Genetic Polymorphisms: A Systematic Review and Meta-Analysis. PLoS One. 2013; 8(1): 1-9.

Gibbon A, Hobbs H, Van der Merwe W, Raleigh SM, Cook J, Handley CJ, et al. The MMP3 gene in musculoskeletal soft tissue injury risk profiling: A study in two independent sample groups. J Sports Sci. 2016; 35(1): 1-8.

Longo UG, Candela V, Berton A, Salvatore G, Guarnieri A, Deangelis J, et al. Genetic basis of rotator cuff injury: A systematic review. BMC Med Genet. 2019; 20(1): 1-6.

Lulinska-Kuklika E, Rahim M, Moska W, Maculewicz E, Kaczmarczyk M, Maciejewska-Skrendo A, et al. Are MMP3, MMP8 and TIMP2 gene variants associated with anterior cruciate ligament rupture susceptibility? J Sci Med Sport. 2019; 22(7): 753-7.

Thankam FG, Evan DK, Agrawal DK, Dilisio MF. Collagen type III content of the long head of the biceps tendon as an indicator of glenohumeral arthritis. Mol Cell Biochem. 2019; 454(1-2): 25-31.

Seale K, Burger M, Posthumus M, Hager C, Stattin E, Nilsson KG, et al. The apoptosis pathway and CASP8 variants conferring risk for acute and overuse musculoskeletal injuries. J Orthop Res. 2019; 38(3): 680-8.

Popovski ZT, Nestorovski T, Wick M, Tufekchievski A, Aceski A, Gjorgjievski S. Molecular-genetic predictions in selection of sport talents and ethical Aspect of Their Application. Res Phys Educ Sport Heal [Internet]. 2016; 5(1): 57-63. Disponible en: http://search.ebscohost.com/login.aspx?direct=true&db=s3h&AN=117704776&lang=pt-br&site=ehost-live.

Rahim M, El Khoury LY, Raleigh SM, Ribbans WJ, Posthumus M, Collins M, et al. Human Genetic Variation, Sport and Exercise Medicine, and Achilles Tendinopathy: Role for Angiogenesis- Associated Genes. Omi A J Integr Biol. 2016; 20(9): 520-7.

Kang X, Tian B, Zhang L, Ge Z, Zhao Y, Zhang Y. Relationship of common variants in MPP7, TIMP2 and CASP8 genes with the risk of chronic achilles tendinopathy. Sci Rep [Internet]. 2019; 9: 1-6. Disponible en: https://doi.org/10.1038/s41598-019-54097-y.

El Khoury LY, Rickaby R, Samiric T, Raleigh SM. Promoter methylation status of the TIMP2 and ADAMTS4 genes and patellar tendinopathy. J Sci Med Sport. 2018; 21(4): 378-82.

Lulińska-Kuklik E, Leźnicka K, Humińska-Lisowska K, Moska W, Michałowska-Sawczyn M, Ossowski Z, et al. The VEGFA gene and anterior cruciate ligament rupture risk in the Caucasian population. Biol Sport. 2019; 36(1): 3-8.

Silva RRV, Guimarães ALS, Neto JFR, Silveira MF, de Paula AMB, Pena G das G, et al. Genetic variation in the promoter region of the TNF rs1800629 gene is not associated with adiposity index, but AA genotype is more likely to have low cellular membrane integrity. Meta Gene. 2017; 13: 85-91.

Raleigh SM. Epigenetic regulation of the ACE gene might be more relevant to endurance physiology than the I/D polymorphism. J Appl Physiol. 2012; 112(6): 1082-3.

Fernandez E, Alvarez M, Podhajcer Os, Stolovitzky G. Genomica Funcional: En Busca De La Funcion De Los Genes. Actas La Acad Nac Cienc Repúb. Argent. 2015; 218(13).

Pitsiladis Y, Wang G, Wolfarth B, Scott R, Fuku N, Mikami E, et al. Genomics of elite sporting performance: What little we know and necessary advances. Br J Sports Med. 2013; 47(9): 550-5.

Ministerio de Salud y Protección Social Colombia. Resolución 8430. Colombia; 1993. Pp. 1-12.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Médicas UIS

Downloads

Download data is not yet available.