Avances recientes en el diagnóstico imagenológico de la hidrocefalia en niños: revisión de la literatura de los últimos seis años
portada 35(1)
PDF (Español (España))

Keywords

hydrocephalus
glymphatic system
magnetic resonance imaging
ultrasonography
cerebrospinal fluid shunts

How to Cite

Moreno-Gómez, L. Ángela ., Peláez-Rincón , O. F., & Álvarez-Castro , M. F. (2022). Avances recientes en el diagnóstico imagenológico de la hidrocefalia en niños: revisión de la literatura de los últimos seis años . Médicas UIS, 35(1), 17–29. https://doi.org/10.18273/revmed.v35n1-2022002

Abstract

Introduction: Hydrocephalus is a frequent health problem in pediatrics, particularly during the first month of life. The incidence in Latin America is one of the highest in the world. In Colombia there are no representative data. Recent findings related to the dynamics of cerebrospinal fluid allowed proposals of new models on the pathophysiology of hydrocephalus that, along with new findings on MRI, have led to a better understanding of the disease. Objective: To review the information available in the literature about the progress in the pathophysiology of the disease and neuroimaging findings, in addition to conducting a brief review on the role of these in the diagnosis and follow-up of patients. Methodology: A bibliographic review with MESH terms was carried out in PUBMED, OVID and SCOPUS databases, with articles published in the last 6 years. 30 articles that dealt with the theme in a comprehensive way were included. Conclusions: New findings described as the glymphatic system and the role of AQP4, along with advances in neuroimaging, especially MRI, have helped to better understand hydrocephalus, supporting the development of a new model of cerebrospinal fluid dynamics, and based on it, different explanations regarding its pathophysiology. MÉD.UIS.2022;35(1): 17-29.

https://doi.org/10.18273/revmed.v35n1-2022002
PDF (Español (España))

References

Dewan MC, Rattani A, Mekary R, Glancz LJ, Yunusa I, Baticulon RE, et al. Global hydrocephalus epidemiology and incidence: Systematic review and meta-analysis. J Neurosurg. 2018:1-15.

Morales C, Torres A, Castro J, Bernal J, Castro A. Hidrocefalia en población pediátrica. Experiencia en el servicio de neurocirugía del Hospital Pediátrico Baca Ortiz, Quito-Ecuador, 2016-2019. Peru J Neurosurg. 2020;2(3):81-7.

Ramírez-Cheyne J, Pachajoa H, Ariza Y, Isaza C, Saldarriaga W. Defectos congénitos en un hospital de tercer nivel en Cali, Colombia. Rev. chil. obstet. ginecol. 2015;80(6):442-9.

Polo-Orcasitas W. Descripción de la población pediátrica con hidrocefalia de la Fundación Hospital de la Misericordia de Bogotá, durante los años 2010 – 2017 [Trabajo de grado - Pregrado]. 2019. Bogotá: Departamento de Cirugía, Facultad de Medicina, Universidad Nacional de Colombia; 2019.

Patel SK, Tari R, Mangano FT. Pediatric Hydrocephalus and the Primary Care Provider. Pediatr Clin North Am. 2021;68(4):793-809.

Campos LG, Menegatti R, Vedolin LM. Hydrocephalus in children. In: Nunes RH, Abello AL, Castillo M, editors. Critical Findings in Neuroradiology. Switzerland: Springer International Publishing; 2016. p. 255–63.

Raybaud C. Radiology of hydrocephalus: From morphology to hydrodynamics and pathogenesis. In: Cinalli G, Özek MM, Sainte-Rose C, editors. Pediatric Hydrocephalus: Second Edition. Switzerland: Springer International Publishing; 2019. p. 379–478.

Klebe D, McBride D, Krafft PR, Flores JJ, Tang J, Zhang JH. Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: Established mechanisms and proposed pathways. J Neurosci Res. 2020;98(1):105-20.

Raybaud C. MR assessment of pediatric hydrocephalus: a road map. Childs Nerv Syst. 2016;32(1):19-41.

de Laurentis C, Cristaldi P, Arighi A, Cavandoli C, Trezza A, Sganzerla EP, et al. Role of aquaporins in hydrocephalus: what do we know and where do we stand? A systematic review. J Neurol. 2021;268(11):4078-94.

Stratchko L, Filatova I, Agarwal A, Kanekar S. The Ventricular System of the Brain: Anatomy and Normal Variations. Semin Ultrasound CT MR. 2016;37(2):72-83.

Plog BA, Nedergaard M. The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future. Annu Rev Pathol. 2018;13:379-94.

Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner’s Guide. Neurochem Res. 2015;40(12):2583-99.

Benveniste H, Lee H, Volkow ND. The Glymphatic Pathway: Waste Removal from the CNS via Cerebrospinal Fluid Transport. Neuroscientist. 2017;23(5):454-65.

Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol. 2018;135(3):387-407.

Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016-24.

Krishnan P, Raybaud C, Palasamudram S, Shroff M. Neuroimaging in Pediatric Hydrocephalus. Indian J Pediatr. 2019;86(10):952-60.

Yamada S, Kelly E. Cerebrospinal Fluid Dynamics and the Pathophysiology of Hydrocephalus: New Concepts. Semin Ultrasound CT MR. 2016;37(2):84-91.

Dudink J, Steggerda SJ, Horsch S, eurUS.brain group. State-of-the-art neonatal cerebral ultrasound: technique and reporting. Pediatr Res. 2020;87(Suppl 1):3-12.

Llorens-Salvador R, Moreno-Flores A. El ABC de la ecografía transfontanelar y más. Radiologia. 2016;58:129–41.

Levene MI. Measurement of the growth of the lateral ventricles in preterm infants with real-time ultrasound. Arch Dis Child. 1981;56(12):900-4.

Sari E, Sari S, Akgün V, Özcan E, Ìnce S, Babacan O, et al. Measures of ventricles and evans’ index: From neonate to adolescent. Pediatr Neurosurg. 2015;50(1):12-7.

Diwakar RK, Khurana O. Cranial Sonography in Preterm Infants with Short Review of Literature. J Pediatr Neurosci. 2018;13(2):141-9.

Marino MA, Morabito R, Vinci S, Germanò A, Briguglio M, Alafaci C, et al. Benign external hydrocephalus in infants. A single centre experience and literature review. Neuroradiol J. 2014;27(2):245-50.

Khosroshahi N, Nikkhah A. Benign Enlargement of Subarachnoid Space in Infancy: “A Review with Emphasis on Diagnostic Work-Up”. Iran J Child Neurol. 2018;12(4):7-15.

Yoshizuka T, Kinoshita M, Iwata S, Tsuda K, Kato T, Saikusa M, et al. Estimation of elevated intracranial pressure in infants with hydroce-phalus by using transcranial Doppler velocimetry with fontanel compression. Sci Rep. 2018 Aug 7;8(1):11824.

Kolarovszki B. Cerebral Hemodynamics in Pediatric Hydrocephalus: Evaluation by Means of Transcranial Doppler Sonography. In: Aslanidis T, editor. Highlights on Hemodynamics. London: IntechOpen; 2018.

Kolarovszki B. The Role of Transcranial Doppler Sonography in the Management of Pediatric Hydrocephalus. London: IntechOpen; 2019. 158 p.

Krishnan P, Raybaud C, Palasamudram S, Shroff M. Neuroimaging in Pediatric Hydrocephalus. Indian J Pediatr. 2019;86(10):952-60.

Rebollo Polo M. Management of pediatric central nervous system emergencies: A review for general radiologists. Radiologia. 2016;58 Suppl 2:142-50.

Kartal MG, Algin O. Evaluation of hydrocephalus and other cerebrospinal fluid disorders with MRI: An update. Insights Imaging. 2014;5(4):531-41.

Robson CD, MacDougall RD, Madsen JR, Warf BC, Robertson RL. Neuroimaging of Children With Surgically Treated Hydrocephalus: A Practical Approach. AJR Am J Roentgenol. 2017;208(2):413-9.

Lollis SS, Mamourian AC, Vaccaro TJ, Duhaime AC. Programmable CSF shunt valves: radiographic identification and interpretation. AJNR Am J Neuroradiol. 2010;31(7):1343-6.

Wallace AN, McConathy J, Menias CO, Bhalla S, Wippold FJ 2nd. Imaging evaluation of CSF shunts. AJR Am J Roentgenol. 2014;202(1):38-53.

Boyle TP, Nigrovic LE. Radiographic evaluation of pediatric cerebrospinal fluid shunt malfunction in the emergency setting. Pediatr Emerg Care. 2015;31(6):435-40.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.