From endothelial dysfunction to clinic
PDF (Español (España))
HTML (Español (España))

Keywords

Atherosclerosis
Infammation
Risk

How to Cite

Rubio Guerra, A. F. (2013). From endothelial dysfunction to clinic. Médicas UIS, 26(2). Retrieved from https://revistas.uis.edu.co/index.php/revistamedicasuis/article/view/3654

Abstract

Background: coronary heart disease is the main cause of death worldwide, and coronary atherosclerosis is responsible of about 90% of ischemic heart events . Objective: review the pathophysiology of atherosclerosis, from the factors that promote endothelial dysfunction,
until the apparition of the diseases secondary to this disease. Conclusions: atherosclerosis is a chronic and complex process that begins during childhood, several mechanisms contributes to atherogenesis including endothelial dysfunction and infammation. A better understanding of the pathogenesis of atherosclerosis will provide us with tools for reducing mortality resulting from coronary artery disease. (MÉD.UIS.2013;26(2):51-7)

 

PDF (Español (España))
HTML (Español (España))

References

1. Ghanem FA, Movahed A. Inflammation in high blood pressure: a clinical perspective. J Am Soc Hypertens. 2007;1:113-9.

2. Mather KJ, Lteif A, Steinberg HO, Baron AD. Interactions between endothelin and nitric oxide in the regulation of vascular tone in obesity and diabetes. Diabetes. 2004;53(8):2060-6.

3. Rubio-Guerra AF, Vargas-Robles H, Ramos-Brizuela LM, Escalante-Acosta BA. Is tetrahydrobiopterin a therapeutic option in diabetic hypertensive patients? Integr Blood Press Control. 2010;3:125-32.

4. Alp NJ, Channon KM. Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol. 2004;24(3):413-20.

5. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25(1):29-38.

6. de Winter MP, Kanters E, Kraal G, Hofker MH. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol. 2005;25(5):904-14.

7. Rubio-Guerra AF, Castro-Serna D, Rodríguez-López L, Vargas-Ayala G, Lozano-Nuevo JJ. Papel de la inflamación y la adhesión leucocitaria en la fisiopatología del daño orgánico en la hipertensión arterial. Medicina Universitaria. 2010;12(48):181-6.

8. Frenette PS, Wagner DD. Adhesion molecules--Part 1. N Engl J Med. 1996;334(23):1526-9.

9. Smith CW, Burns AR, Simon SI. Co-operative signaling between leucocytes and endothelium mediating firm attachments. In: Pearson JD, Editors. Vascular adhesion molecules and Inflammation. Basel; Boston; Berlin: Birkhauser; 1999. p.39-64.

10. Hansson GK. Inflammation, Atherosclerosis, and Coronary Artery Disease. N Engl J Med. 2005;352(16):1685-95.

11. Rubio-Guerra AF, Vargas-Robles H, Medina-Santillán R, Escalante-Acosta BA. Niveles de moléculas de adhesión solubles en pacientes diabéticos tipo 2 normotensos e hipertensos. Gac Med Mex. 2008;144(1):11-4.

12. Galen FX. Cell adhesion molecules in hypertension: endothelial markers of vascular injury and predictors of target organ damage? J Hypertens. 2002;20(5):813-6.

13. Rubio-Guerra AF, Vargas-Robles H, Maceda A, Vargas-Ayala G, Rodriguez-Lopez L, Escalante-Acosta BA. Correlation between the levels of circulating adhesion molecules and atherosclerosis in hypertensive type-2 diabetic patients. Clin Exp Hypertens. 2010;32(5):308-10.

14. Tzoulaki I, Murray GD, Lee AJ, Rumley A, Lowe GD, Fowkes GR. C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population: Edinburgh Artery Study. Circulation. 2005;112(7):976-83.

15. Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med. 2004;116 Suppl 6:9-16.

Downloads

Download data is not yet available.