Effects of intraoperative mechanical ventilation and of pulmonary protective ventilation in the adult surgical patient
PDF (Español (España))
HTML (Español (España))

How to Cite

Peris-Montalt, R., de la Cruz-García-Dihinx, I., Errando, C. L., & Granell, M. (2015). Effects of intraoperative mechanical ventilation and of pulmonary protective ventilation in the adult surgical patient. Médicas UIS, 28(1), 65–78. Retrieved from https://revistas.uis.edu.co/index.php/revistamedicasuis/article/view/4906

Abstract

Introduction: artificial ventilation is essential for an adequate gas interchange during general anesthesia, it has been used with high tidal volume to prevent hypoxemia and atelectasis, but high tidal volumes and high plateau pressures might aggravate or start a lung injury. Pulmonary protective ventilation consists of use of low tidal volumes, limit plateau pressure to minimize overdistension and use positive pressure at the end of expiration and controlled ventilation. Objective: to analize the evidence on the possible benefit of protective pulmonary ventilation during surgery with bipulmonar or unipulmonar controlled ventilation. Materials and Methods: the Pubmed-Medline database was searched for years 2010-2014 for articles on clinical and pathophysiological reviews, systematic reviews, metaanalysis, observational studies, and randomized controlled trials. A total of 2031 articles were included. Results: most studies using pulmonary protective ventilation: tidal volume 6-8 ml/kg, positive end expiratory pressure 4-8 cmH2O and recruitment maneuvers,  showed improved physiologic and ventilatory parameters. Some investigations offered not homogeneous results; however, the clinical evidence of improvement is not as clear. Studies with wide sample sizes showed increased respiratory morbimortality in patients in whom this strategy was not applied. Conclusions: application of protective pulmonary ventilation strategies might improve the immediate and delayed prognostic and outcomes, specially respiratory of normal sugical patients. Special populations could benefit of these stratiegies. MÉD.UIS. 2015;28(1):65-78.

Keywords: Anesthesia. Respiration, artificial. One-Lung Ventilation. Surgery. Thoracic Surgery.

PDF (Español (España))
HTML (Español (España))

References

Slutsky AS, Ranieri VM. Ventilator-induced lung injury. New Engl J Med. 2013;369:2126-36.

Craig DB, Wahba WM, Don H. Airway closure and lung volumes in surgical positions. Can Anaesth. 1971;18(1):92-9.

Burns KE, Adhikari NK, Slutsky AS, Guyatt GH, Villar J, Zhang H, et al. Pressure and volume limited ventilation for the ventilator management of patients with acute lung injury: a systematic review and meta-analysis. PloS one. 2011;6(1):e14623.

Blum JM, Fetterman DM, Park PK, Morris M, Rosenberg AL. A description of intraoperative ventilator management and ventilation strategies in hypoxic patients. Anesth Analg. 2010;110(6):1616-22.

Fernandez-Bustamante A, Wood CL, Tran ZV, Moine P. Intraoperative ventilation: incidence and risk factors for receiving large tidal volumes during general anesthesia. BMC Anesthesiol. 2011;11:22.

Futier E, Constantin JM, Jaber S. Protective lung ventilation in operating room: a systematic review. Minerva Anestesiol. 2014;80(6):726-35.

Jaber S, Coisel Y, Chanques G, Futier E, Constantin JM, Michelet P, et al. A multicentre observational study of intraoperative ventilatory management during general anaesthesia: tidal volumes and relation to body weight. Anaesthesia. 2012;

(9):999-1008.

Sabate S, Mazo V, Canet J. Predicting postoperative pulmonary complications: implications for outcomes and costs. Curr Opinion Anaesthesiol. 2014;27(2):201-9.

Michelet P, D’Journo XB, Roch A, Doddoli C, Marin V, Papazian L, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105(5):911-9.

Goldenberg NM, Steinberg BE, Lee WL, Wijeysundera DN, Kavanagh BP. Lung-protective ventilation in the operating room: time to implement? Anesthesiology. 2014;121(1):184-8.

Cabrera-Benitez NE, Laffey JG, Parotto M, Spieth PM, Villar J, Zhang H, et al. echanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: a significant contributor to poor outcome. Anesthesiology. 2014;121:189-98.

Grasso S, Stripoli T, Sacchi M, Trerotoli P, Staffieri F, Franchini D, et al. Inhomogeneity of lung parenchyma during the open lung strategy: a computed tomography scan study. Am J Resp Crit Care Med. 2009;180(5):415-23.

Spieth PM, Bluth T, Gama De Abreu M, Bacelis A, Goetz AE, Kiefmann R. Mechanotransduction in the lungs. Minerva Anestesiol. 2014;80(8):933-41.

Sutherasan Y, Vargas M, Pelosi P. Protective mechanical ventilation in the non-injured lung: review and meta-analysis. Crit Care. 2014;18(12):211.

Fernandez-Bustamante A, Klawitter J, Repine JE, Agazio A, Janocha AJ, Shah C, et al. Early effect of tidal volume on lung injury biomarkers in surgical patients with healthy lungs. Anesthesiology. 2014;121(3):469-81.

Pecchiari M, Monaco A, Koutsoukou A, Della Valle P, Gentile G, D’Angelo E. Effects of various modes of mechanical ventilation in normal rats. Anesthesiology. 2014;120(4):943-50.

Tucci MR, Costa EL, Wellman TJ, Musch G, Winkler T, Harris RS, et al. Regional lung derecruitment and inflammation during hours of mechanical ventilation in supine healthy sheep. Anesthesiology. 2013;119(1):156-65.

Fan E, Villar J, Slutsky AS. Novel approaches to minimize ventilator-induced lung injury. BMC Med. 2013;11:85.

Apostolakis EE, Koletsis EN, Baikoussis NG, Siminelakis SN, Papadopoulos GS. Strategies to prevent intraoperative lung injury during cardiopulmonary bypass. J Cardiothorac Surg. 2010;5:1.

Lellouche F, Dionne S, Simard S, Bussieres J, Dagenais F. High tidal volumes in mechanically ventilated patients increase organ dysfunction after cardiac surgery. Anesthesiology. 2012;116(5):1072-82.

Severgnini P, Selmo G, Lanza C, Chiesa A, Frigerio A, Bacuzzi A, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology. 2013;118(6):1307-21.

Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative lowtidalvolume ventilation in abdominal surgery. New Engl J Med. 2013;369(5):428-37.

Hemmes SN, Gama de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicenter randomised controlled trial. Lancet. 014;384(9942):495-503.

Futier E. Positive end-expiratory pressure in surgery: good or bad? Lancet. 2014;384(9942):472-4.

Hemmes SN, Serpa Neto A, Schultz MJ. Intraoperative ventilator strategies to prevent postoperative pulmonary complications: a meta-analysis. Curr Opin Anaesthesiol. 2013;26(2):126-33.

Fuller BM, Mohr NM, Drewry AM, Carpenter CR. Lower tidal volume at initiation of mechanical ventilation may reduce progression to acute respiratory distress syndrome: a systematic review. Crit Care. 2013;17(1):R11.

Wrigge H, Pelosi P. Tidal volume in patients with normal lungs during general anesthesia: lower the better? Anesthesiology. 2011;114(5):1011-3.

Serpa Neto A, Cardoso SO, Manetta JA, Per eira VG, EspositoDC, Pasqualucci Mde O, et al. Association between use of lungprotective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress

syndrome: a meta-analysis. JAMA. 2012;308(16):1651-9.

Levin MA, McCormick PJ, Lin HM, Hosseinian L, Fischer GW. Low intraoperative tidal volume ventilation with minimal PEEP is associated with increased mortality. Br J Anaesth. 2014;113(1):97-108.

Karsten J, Heinze H, Meier T. Impact of PEEP during laparoscopic surgery on early postoperative ventilation distribution visualized by electrical impedance tomography. Minerva Anestesiol .2014;80(2):158-66.

Hovaguimian F, Lysakowski C , Elia N, Tramer MR. Effect ofintraoperative high inspired oxygen fraction on surgical site infection, postoperative nausea and vomiting, and pulmonary function: systematic review and meta-analysis of randomized controlled trials. Anesthesiology. 2013;119(2):303-16.

Aboab J, Jonson B, Kouatchet A, Taille S, Niklason L, BrochardL. Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med. 2006;32(12):1979-86.

Hedenstierna G, Edmark L. Mechanisms of atelectasis in the perioperative period. Best Pract Res Clin Anaesthesiol. 2010;24(2):157-69.

Edmark L, Auner U, Enlund M, Ostberg E, Hedenstierna G. Oxygen concentration and characteristics of progressive atelectasis formation during anaesthesia. Acta AnaesthesiolScand. 2011;55(1):75-81.

Jordan S, Mitchell JA, Quinlan GJ, Goldstraw P, Evans TW. The pathogenesis of lung injury following pulmonary resection. Eur Resp J. 2000;15(4):790-9.

Misthos P, Katsaragakis S, Theodorou D, Milingos N, Skottis I. The degree of oxidative stress is associated with major adverse effects after lung resection: a prospective study. Eur J Cardiothorac Surg. 2006;29(4):591-5.

Kleinsasser AT, Pirch er I, Truebsbach S, Knotzer H, LoeckingerA, Treml B. Pulmonary function after emergence on 100% oxygen in patients with chronic obstructive pulmonary disease: a randomized, controlled trial. Anesthesiology. 2014;120(5):1146-51.

Eikermann M, Vidal Melo MF. Therapeutic range of spontaneous breathing during mechanical ventilation. Anesthesiology. 2014;120(3):536-9.

Güldner A, Braune A, Carvalho N, Beda A, Zeidler S, Wiedemann B, et al. Higher levels of spontaneous breathing induce lung recruitment and reduce global stress/strain in experimental lung injury. Anesthesiology. 2014;120(3):673-82.

Schilling T, Kozian A, Senturk M, Huth C, Reinhold A, Hedenstierna G, et al. Effects of volatile and intravenous anesthesia on the alveolar and systemic inflammatory response in thoracic surgical patients. Anesthesiology.

;115(1):65-74.

Grosse-Sundrup M, Henneman JP, Sandberg WS, Bateman BT, Uribe JV, Nguyen NT, et al. Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score

matched cohort study. BMJ. 2012;345:e6329.

Martin TW, Aunspaugh JP. The “other tube” in the airway: what do we know about it? Anesth Analg. 2014;118(3):501-3.

Salem MR, Khorasani A, Saatee S, Crystal GJ, El-Orbany M. Gastric tubes and airway management in patients at risk of aspiration: history, current concepts, and proposal of an algorithm. Anesth Analg. 2014;118(3):569-79.

Canet J, Gallart L, Gomar C, Paluzie G, Valles J, Castillo J, et al. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology. 2010;113(6):1338-50.

Kor DJ, Lingineni RK, Gajic O, Park PK, Blum JM, Hou PC, et al. Predicting risk of postoperative lung injury in high-risk surgical patients: a multicenter cohort study. Anesthesiology. 2014;120(5):1168-81.

Della Rocca G, Coccia C. Acute lung injury in thoracic surgery. Curr Opin Anaesthesiol. 2013;26(1):40-6.

Cinnella G, Grasso S, Natale C, Sollitto F, Cacciapaglia M, Angiolillo M, et al. Physiological effects of a lung-recruiting strategy applied during one-lung ventilation. Acta Anaesthesiol Scand. 2008;52(6):766-75.

Ren Y, Peng ZL, Xue QS, Yu BW. The effect of timing of application of positive end-expiratory pressure on oxygenation during onelung ventilation. Anaesth Intensive Care. 2008;36(4):544-8.

Kozian A, Schilling T, Schutze H, Heres F, Hachenberg T, Hedenstierna G. Lung computed tomography density distribution in a porcine model of one-lung ventilation. Br J Anaesth. 2009;102(4):551-60.

Ferrando C, Mugarra A, Gutierrez A, Carbonell JA, Garcia M, Soro M, et al. Setting individualized positive end-expiratory pressure level with a positive end-expiratory pressure decrement trial after a recruitment maneuver improves oxygenation and lung mechanics during one-lung ventilation. Anesth Analg.

;118(3):657-65.

Zhang Y, Yu D, Liu B. The influence of positive end-expiratory pressure after a recruitment maneuver. Anesth Analg. 2014;119(5):1222.

Kozian A, Schilling T, Rocken C, Br eitling C, Hachenberg T, Hedenstierna G. ncreased alveolar damage after mechanical ventilation in a porcine model of thoracic surgery. J Cardiothorac Vasc Anesth. 2010;24(4):617-23.

Kozian A, Schilling T, Schutze H, Senturk M, Hachenberg T, Hedenstierna G. Ventilatory protective strategies during thoracic surgery: effects of alveolar recruitment maneuver and low-tidal volume ventilation on lung density distribution. Anesthesiology. 2011;114(5):1025-35.

Licker M, Diaper J, Villiger Y, Spiliopoulos A, Licker V, Robert J, et al. Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Crit Care. 2009;13(2):R41.

Garutti I, Martinez G, Cruz P, Pineiro P, Olmedilla L, de la Gala F. The impact of lung recruitment on hemodynamics during onelung ventilation. J Cardiothorac Vasc Anesth. 2009;23(4):506-8.

Park SH, Jeon YT, Hwang JW, Do SH, Kim JH, Park HP. A preemptive alveolar recruitment strategy before one-lung ventilation improves arterial oxygenation in patients undergoing thoracic surgery: a prospective randomised study. Eur J

Anaesthesiol. 2011;28(4):298-302.

Unzueta C, Tusman G, Suarez-Sipmann F, Bohm S, Moral V. Alveolar recruitment improves ventilation during thoracic surgery: a randomized controlled trial. Br J Anaesth. 2012;108(3):517-24.

Qutub H, El-Tahan MR, Mowafi HA, El-Ghoneimy YF, RegalMA, Al-Saflan AA. Effect of tidal volume on extravascular lung water content during one-lung ventilation for video-assisted thoracoscopic surgery: a randomised, controlled trial. Eur J Anaesthesiol. 2014;31(9):466-73.

Yang M, Ahn HJ, Kim K, Kim JA, Yi CA, Kim MJ, et al. Does a protective ventilation strategy reduce the risk of pulmonary complications after lung cancer surgery?: a randomized controlled trial. Chest. 2011;139(3):530-7.

Burns KE, Lellouche F, Lessard MR, Friedrich JO. Automated weaning and spontaneous breathing trial systems versus nonautomated weaning strategies for discontinuation time in invasively ventilated postoperative adults. Cochrane Database Syst Rev. 2014;2:CD008639.

Herranz-Gordo A, Alonso-Iñigo JM, Fas-Vicent MJ, LlopisCalatayud E. Aplicaciones de la ventilación mecánica no invasiva en anestesiología y reanimación. Rev Esp Anestesiol Reanim. 2010;57(1):16-27.

Cabrini L, Nobile L, Plumari VP, Landoni G, Borghi G,Mucchetti M, et al. Intraoperative prophylactic and therapeutic non-invasive ventilation: a systematic review. Br J Anaesth. 2014;112(4):638-47.

Edgcombe H, Carter K, Yarrow S. Anaesthesia in the prone position. Br J Anaesth. 2008;100(2):165-83.

Memtsoudis SG, Bombardieri AM, Ma Y, Girardi FP. The effectof low versus high tidal volume ventilation on inflammatory markers in healthy individuals undergoing posterior spine fusion in the prone position: a randomized controlled trial. J Clin Anesth. 2012;24(2):263-9.

Nyren S, Radell P, Lindahl SG, Mure M, Petersson J, Larsson SA, et al. Lung ventilation and perfusion in prone and supine postures with reference to anesthetized and mechanically ventilated healthy volunteers. Anesthesiology. 2010;112(3):682-7.

66. Petersson J, Ax M, Frey J, Sánchez-Crespo A, Lindahl SG, Mure M. Positive end-expiratory pressure redistributes regional blood flow and ventilation differently in supine and prone humans. Anesthesiology. 2010;113(6):1361-9.

Liu H, Ma C, Zhang X, Yu C, Yang Y, Song X, et al. Combined incisional ropivacaine infiltration and pulmonary recruitment manoeuvre for postoperative pain relief after diagnostic hysteroscopy and laparoscopy. Chin Med J. 2014;127(5):825-9.

Melo MF, Eikerm ann M. Protect the lungs during abdominalsurgery: it may change the postoperative outcome. Anesthesiology. 2013;118(6):1254-7.

Downloads

Download data is not yet available.