Pathophysiologic factors and perioperative therapeutic goals that affect reconstructive surgical procedures with flaps in patients with Diabetes Mellitus
PDF (Español (España))

How to Cite

Hoyos-R, J. D., Jaimes-O, S., Alvear, J. D., Toloza C, N. A., Vásquez-F, D. M., Velandia-G, J. N., & Velasco-V, A. C. (2017). Pathophysiologic factors and perioperative therapeutic goals that affect reconstructive surgical procedures with flaps in patients with Diabetes Mellitus. Médicas UIS, 30(1), 35–43. https://doi.org/10.18273/revmed.v30n1-2017003

Abstract

diabetes mellitus is considered a risk factor for local complications and surgical failure in reconstructive surgeries, mainly in flaps due to the fact that it causes alterations in the cicatrization process. Objective: to review the available literature on the pathophysiological factors that influence the short-, medium- and long-term results in the diabetic population, the perioperative therapeutic goals associated with higher success rates, and to establish a baseline protocol for the perioperative management of these patients. Searching methodology: we searched the PUBMED, MEDLINE and SCIELO databases using the search terms “Period perioperative”, “Reconstructive surgical procedures”, “Surgical flaps”, “Diabetes mellitus”, obtaining a total of 160 online journal articles, of which 50 were selected. Results: the performance of flaps in patients with diabetes mellitus is associated with an increased risk of failure and complications, which decrease considerably when a strict goal-directed perioperative management is performed. Conclusions: diabetes mellitus causes alterations in the inflammatory response, microvascular dysfunction and increases oxidative stress, which is reflected in an abnormal healing process, generating higher infection rates and graft loss, but if glycemic management goals are achieved, in the perioperative period it is possible to reduce the complications and to increase the surgical success. MÉD.UIS. 2017;30(1):35-43.

Keywords: Diabetes Mellitus. Perioperative Period. Reconstructive Surgical Procedures. Surgical Flaps. Physiology Diabetes. Pathology Diabetes. Diabetes Complications.

https://doi.org/10.18273/revmed.v30n1-2017003
PDF (Español (España))

References

Bianchi B, Copelli C, Ferrari S, Ferri A, Sesenna E. Free flaps:

outcomes and complications in head and neck reconstructions. J

Craniomaxillofac Surg. 2009;37(8):438–42.

Attinger CE, Ducic I, Zelen C. The use of local muscle flaps

in foot and ankle reconstruction. Clin Podiatr Med Surg.

;17(4):681–71.

Rosado P, Cheng HT, Wu CM, Wei FC. Influence of diabetes

mellitus on postoperative complications and failure in head and

neck free flap reconstruction: a systematic review and metaanalysis.

Head Neck. 2015; 37(4):615-18.

Bozikov K, Arnez ZM. Factors predicting free flap complications

in head and neck reconstruction. J Plast Reconstr Aesthet Surg.

;59(7):737-42.

Lee S, Thiele C. Factors associated with free flap complications

after head and neck reconstruction and the molecular basis of

fibrotic tissue rearrangement in preirradiated soft tissue. J Oral

Maxillofac Surg. 2010;68(9):2169-78.

Pérez-Guisado J, Fidalgo-Rodríguez FT, Gaston KL, Rioja LF,

Thomas SJ. Injertos cutáneos, hábito de fumar y diabetes mellitus

tipo 2. Medicina (B. Aires). 2012;72(6):467-70.

Taleb S, Moghaddas P, Rahimi Balaei M, Taleb S, Rahimpour S,

Abbasi A, et al. Metformin improves skin flap survival through

nitric oxide system. J Surg Res. 2014;192(2):686-91.

Ramiréz GA. Fisiología de la cicatrización cutánea. RFS Julio -

Diciembre 2010. Universidad Surcolombiana. 69 Vol. 2 Nro.

-2010: 69-78.

Clark, R.A.F. The molecular and cellular biology of wound repair.

nd ed. New York: Plenum Press; 1996.

American Diabetes Association. Diagnosis and classification of

diabetes mellitus. Diabetes Care. 2012;35 Suppl 1:S64-71.

Barr LC, Joyce AD. Microvascular anastomoses in diabetes: an

experimental study. Br J Plast Surg. 1989; 42(1): 50-53.

Liu SA, Wong YK, Poon CK, Wang CC, Wang CP, Tung KC. Risk

factors for wound infection after surgery in primary oral cavity

cancer patients. Laryngoscope. 2007; 117(1): 166-171.

Ducic I, Attinger CE. Foot and ankle reconstruction: pedicled

muscle flaps versus free flaps and the role of diabetes. Plast

Reconstr Surg. 2011; 128(1): 173-80.

Ikonen TS, Sund R, Venermo M, Winell K. Fewer major

amputations among individuals with diabetes in Finland in

-2007: A population-based study. Diabetes Care. 2010;

(12): 2598-2603.

Davis BJ, Xie Z, Viollet B, Zou MH. Activation of the AMPactivated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat

shock protein 90 and endothelial nitric oxide synthase. Diabetes.

; 55(2): 496-505.

Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al.

Role of AMP-activated protein kinase in mechanism of metformin

action. J Clin Invest. 2001; 108(8): 1167-1174.

Kravchuk E, Grineva E, Bairamov A, Galagudza M, Vlasov T. The

effect of metformin on the myocardial tolerance to ischemia-reperfusion injury in the rat model of diabetes mellitus type II.

Exp Diabetes Res. 2011; 2011: 907496.

Mueller MJ, Sinacore DR, Hastings MK, Strube MJ, Johnson JE.

Effect of Achilles tendon lengthening on neuropathic plantar

ulcers: A randomized clinical trial. J Bone Joint Surg Am. 2003;

-A(8): 1436-45.

Pecoraro RE, Reiber GE, Burgess EM. Pathways to diabetic limb

amputation. Basis for prevention. Diabetes Care. 1990; 13(5):

-521.

Lavery LA, Hunt NA, Ndip A, Lavery DC, Van Houtum W,

Boulton AJ. Impact of chronic kidney disease on survival after

amputation in individuals with diabetes. Diabetes Care. 2010;

(11): 2365–2369.

Ecker ML, Jacobs BS. Lower extremity amputation in diabetic

patients. Diabetes. 1970; 19(3): 189–195.

Kallio M, Vikatmaa P, Kantonen I, Lepäntalo M, Venermo M,

Tukiainen E. Strategies for free flap transfer and revascularisation

with long term outcome in the treatment of large diabetic foot

lesions. Eur J Vasc Endovasc Surg. 2015; 50(2):223-230.

Pereira CM, Figueiredo ME, Carvalho R, Catre D, Assunção JP.

Anesthesia and surgical microvascular flaps. Rev Bras Anestesiol.

; 62(4): 563-579.

Robertshaw HJ, Hall GM. Diabetes mellitus: anaesthetic

management. Anaesthesia. 2006; 61(12): 1187-1190.

Smiley DD, Umpierrez GE. Perioperative glucose control in the

diabetic or nondiabetic patient. South Med J. 2006; 99(6): 580-

Milaskiewicz RM, Hall GM. Diabetes and anaesthesia: the past

decade. Br J Anaesth. 1992; 68(2): 198-206.

Thourani VH, Weintraub WS, Stein B, et al. Influence of diabetes

on early and late outcome after coronary artery bypass grafting.

Ann Thorac Surg. 1999; 67(4): 1045-1052.

Mraovic B, Schwenk ES, Epstein RH. Intraoperative accuracy

of a point-of-care glucose meter compared with simultaneous

central laboratory measurements. J Diabetes Sci Technol. 2012;

(3): 541-546.

Kadoi Y. Anesthetic considerations in diabetic patients. Part I:

preoperative considerations of patients with diabetes mellitus. J

Anesth. 2010; 24(5): 739-747.

Rosenbloom AL, Grgic A, Frias JL. Diabetes mellitus, short stature and jointstiffness—a new syndrome. Pediatr Res. 1974; 8(4):

Rehman HU, Mohammed K. Perioperative management of diabetic patients. Curr Surg. 2003;60(6):607-11.

Nazar C, Herrera C, González A. Manejo preoperatorio de

pacientes con diabetes mellitus. Rev Chil Cir. 2013;65(4):354-9.

Sebranek JJ, Lugli AK, Coursin DB. Glycaemic control in the

perioperative. Br J Anaesth. 2013;111 Suppl 1:i18-i34.

Horlen C, Malone R, Bryant B, Dennis B, Carey T, Pignone M, et

al. Frequency of inappropriate metformin prescriptions. JAMA.

;287(19):2504-5.

Raju TA, Torjman MC, Goldberg ME. Periopetative blood glucose

monitoring in the general surgical population. J Diabetes Sci

Technol. 2009; 3(6): 1282-7.

Meneghini LF. Perioperative management of diabetes: translating

evidence into practice. Cleve Clin J Med. 2009;76(4):S53-S59.

Morrison S, O’Donnell J, Ren D, Henker R. Perioperative

glucose monitoring and treatment of patients undergoing

vascular surgery in a community hospital setting. AANA J. 2014;

(6): 427-30.

Beattie WS. Evidence-based perioperative risk reduction. Can J

Anesth. 2005; 52 Suppl 1:R17–R27. DOI: 10.1007/BF03023080.

Mukherjee D, Eagle KA. Perioperative cardiac assessment for

noncardiac surgery. Circulation. 2003; 107(22): 2771–4.

Dagogo-Jack S, Alberti KG. Management of diabetes mellitus

in surgical patients. Diabetes Spectr. 2002; 15(1): 44-8. DOI:

2337/diaspect.15.1.44.

Carles M, Raucoules-Aimé M. Prise en charge anesthésique du

patient diabétique. Presse Med. 2011; 40(6): 587-95.

Evans CH, Lee J, Ruhlman MK. Optimal glucose management in

the perioperative period. Surg Clin North Am. 2015; 95(2): 337-54.

Binder C, Lauritzen T, Faber O, Pramming S. Insulin

pharmacokinetics. Diabetes Care. 1984; 7(2): 188-99.

Sindelka G, Heinemann L, Berger M, Frenck W, Chantelau E.

Effect of insulin concentration, subcutaneous fat thickness and

skin temperature on subcutaneous insulin absorption in healthy

subjects. Diabetologia. 1994; 37(4): 377-80.

Lazar HL, McDonnell M, Chipkin SR, Furnary AP, Engelman

RM, Sadhu AR, et al. The Society of Thoracic Surgeons practice

guideline series: Blood glucose management during adult cardiac

surgery. Ann Thorac Surg. 2009; 87(2): 663-9.

Bell G, Dickson U, Arana A, Robinson D, Marshall C, Morton

N. Remifentanil vs fentanyl/morphine for pain and stress control

during pediatric cardiac surgery. Paediatr Anaesth. 2004; 14(10):

-60.

Swenne CL, Lindholm C, Borowiec J, Schnell AE, Carlsson

M. Perioperative glucose control and development of surgical

wound infections in patients undergoing coronary artery bypass

graft. J Hosp Infect. 2005; 61(3): 201-12.

Latham R, Lancaster AD, Covington JF, Pirolo JS, Thomas CS Jr.

The association of diabetes and glucose control with surgical-site

infections among cardiothoracic surgery patients. Infect Control

Hosp Epidemiol. 2001; 22(10): 607-12.

Trick WE, Scheckler WE, Tokars JI, Jones KC, Reppen ML, Smith

EM, et al. Modifiable risk factors associated with deep sternal

site infection after coronary artery bypass grafting. J Thorac

Cardiovasc Surg. 2000; 119(1): 108-14.

Ambiru S, Kato A, Kimura F, Shimizu H, Yoshidome H, Otsuka

M, et al. Poor postoperative blood glucose control increases

surgical site infections after surgery for hepato-biliary-pancreatic

cancer: a prospective study in a high-volume institute in Japan. J

Hosp Infect. 2008; 68(3): 230-3.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Médicas UIS

Downloads

Download data is not yet available.