Abstract
diabetes mellitus is considered a risk factor for local complications and surgical failure in reconstructive surgeries, mainly in flaps due to the fact that it causes alterations in the cicatrization process. Objective: to review the available literature on the pathophysiological factors that influence the short-, medium- and long-term results in the diabetic population, the perioperative therapeutic goals associated with higher success rates, and to establish a baseline protocol for the perioperative management of these patients. Searching methodology: we searched the PUBMED, MEDLINE and SCIELO databases using the search terms “Period perioperative”, “Reconstructive surgical procedures”, “Surgical flaps”, “Diabetes mellitus”, obtaining a total of 160 online journal articles, of which 50 were selected. Results: the performance of flaps in patients with diabetes mellitus is associated with an increased risk of failure and complications, which decrease considerably when a strict goal-directed perioperative management is performed. Conclusions: diabetes mellitus causes alterations in the inflammatory response, microvascular dysfunction and increases oxidative stress, which is reflected in an abnormal healing process, generating higher infection rates and graft loss, but if glycemic management goals are achieved, in the perioperative period it is possible to reduce the complications and to increase the surgical success. MÉD.UIS. 2017;30(1):35-43.
Keywords: Diabetes Mellitus. Perioperative Period. Reconstructive Surgical Procedures. Surgical Flaps. Physiology Diabetes. Pathology Diabetes. Diabetes Complications.
References
Bianchi B, Copelli C, Ferrari S, Ferri A, Sesenna E. Free flaps:
outcomes and complications in head and neck reconstructions. J
Craniomaxillofac Surg. 2009;37(8):438–42.
Attinger CE, Ducic I, Zelen C. The use of local muscle flaps
in foot and ankle reconstruction. Clin Podiatr Med Surg.
;17(4):681–71.
Rosado P, Cheng HT, Wu CM, Wei FC. Influence of diabetes
mellitus on postoperative complications and failure in head and
neck free flap reconstruction: a systematic review and metaanalysis.
Head Neck. 2015; 37(4):615-18.
Bozikov K, Arnez ZM. Factors predicting free flap complications
in head and neck reconstruction. J Plast Reconstr Aesthet Surg.
;59(7):737-42.
Lee S, Thiele C. Factors associated with free flap complications
after head and neck reconstruction and the molecular basis of
fibrotic tissue rearrangement in preirradiated soft tissue. J Oral
Maxillofac Surg. 2010;68(9):2169-78.
Pérez-Guisado J, Fidalgo-Rodríguez FT, Gaston KL, Rioja LF,
Thomas SJ. Injertos cutáneos, hábito de fumar y diabetes mellitus
tipo 2. Medicina (B. Aires). 2012;72(6):467-70.
Taleb S, Moghaddas P, Rahimi Balaei M, Taleb S, Rahimpour S,
Abbasi A, et al. Metformin improves skin flap survival through
nitric oxide system. J Surg Res. 2014;192(2):686-91.
Ramiréz GA. Fisiología de la cicatrización cutánea. RFS Julio -
Diciembre 2010. Universidad Surcolombiana. 69 Vol. 2 Nro.
-2010: 69-78.
Clark, R.A.F. The molecular and cellular biology of wound repair.
nd ed. New York: Plenum Press; 1996.
American Diabetes Association. Diagnosis and classification of
diabetes mellitus. Diabetes Care. 2012;35 Suppl 1:S64-71.
Barr LC, Joyce AD. Microvascular anastomoses in diabetes: an
experimental study. Br J Plast Surg. 1989; 42(1): 50-53.
Liu SA, Wong YK, Poon CK, Wang CC, Wang CP, Tung KC. Risk
factors for wound infection after surgery in primary oral cavity
cancer patients. Laryngoscope. 2007; 117(1): 166-171.
Ducic I, Attinger CE. Foot and ankle reconstruction: pedicled
muscle flaps versus free flaps and the role of diabetes. Plast
Reconstr Surg. 2011; 128(1): 173-80.
Ikonen TS, Sund R, Venermo M, Winell K. Fewer major
amputations among individuals with diabetes in Finland in
-2007: A population-based study. Diabetes Care. 2010;
(12): 2598-2603.
Davis BJ, Xie Z, Viollet B, Zou MH. Activation of the AMPactivated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat
shock protein 90 and endothelial nitric oxide synthase. Diabetes.
; 55(2): 496-505.
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al.
Role of AMP-activated protein kinase in mechanism of metformin
action. J Clin Invest. 2001; 108(8): 1167-1174.
Kravchuk E, Grineva E, Bairamov A, Galagudza M, Vlasov T. The
effect of metformin on the myocardial tolerance to ischemia-reperfusion injury in the rat model of diabetes mellitus type II.
Exp Diabetes Res. 2011; 2011: 907496.
Mueller MJ, Sinacore DR, Hastings MK, Strube MJ, Johnson JE.
Effect of Achilles tendon lengthening on neuropathic plantar
ulcers: A randomized clinical trial. J Bone Joint Surg Am. 2003;
-A(8): 1436-45.
Pecoraro RE, Reiber GE, Burgess EM. Pathways to diabetic limb
amputation. Basis for prevention. Diabetes Care. 1990; 13(5):
-521.
Lavery LA, Hunt NA, Ndip A, Lavery DC, Van Houtum W,
Boulton AJ. Impact of chronic kidney disease on survival after
amputation in individuals with diabetes. Diabetes Care. 2010;
(11): 2365–2369.
Ecker ML, Jacobs BS. Lower extremity amputation in diabetic
patients. Diabetes. 1970; 19(3): 189–195.
Kallio M, Vikatmaa P, Kantonen I, Lepäntalo M, Venermo M,
Tukiainen E. Strategies for free flap transfer and revascularisation
with long term outcome in the treatment of large diabetic foot
lesions. Eur J Vasc Endovasc Surg. 2015; 50(2):223-230.
Pereira CM, Figueiredo ME, Carvalho R, Catre D, Assunção JP.
Anesthesia and surgical microvascular flaps. Rev Bras Anestesiol.
; 62(4): 563-579.
Robertshaw HJ, Hall GM. Diabetes mellitus: anaesthetic
management. Anaesthesia. 2006; 61(12): 1187-1190.
Smiley DD, Umpierrez GE. Perioperative glucose control in the
diabetic or nondiabetic patient. South Med J. 2006; 99(6): 580-
Milaskiewicz RM, Hall GM. Diabetes and anaesthesia: the past
decade. Br J Anaesth. 1992; 68(2): 198-206.
Thourani VH, Weintraub WS, Stein B, et al. Influence of diabetes
on early and late outcome after coronary artery bypass grafting.
Ann Thorac Surg. 1999; 67(4): 1045-1052.
Mraovic B, Schwenk ES, Epstein RH. Intraoperative accuracy
of a point-of-care glucose meter compared with simultaneous
central laboratory measurements. J Diabetes Sci Technol. 2012;
(3): 541-546.
Kadoi Y. Anesthetic considerations in diabetic patients. Part I:
preoperative considerations of patients with diabetes mellitus. J
Anesth. 2010; 24(5): 739-747.
Rosenbloom AL, Grgic A, Frias JL. Diabetes mellitus, short stature and jointstiffness—a new syndrome. Pediatr Res. 1974; 8(4):
Rehman HU, Mohammed K. Perioperative management of diabetic patients. Curr Surg. 2003;60(6):607-11.
Nazar C, Herrera C, González A. Manejo preoperatorio de
pacientes con diabetes mellitus. Rev Chil Cir. 2013;65(4):354-9.
Sebranek JJ, Lugli AK, Coursin DB. Glycaemic control in the
perioperative. Br J Anaesth. 2013;111 Suppl 1:i18-i34.
Horlen C, Malone R, Bryant B, Dennis B, Carey T, Pignone M, et
al. Frequency of inappropriate metformin prescriptions. JAMA.
;287(19):2504-5.
Raju TA, Torjman MC, Goldberg ME. Periopetative blood glucose
monitoring in the general surgical population. J Diabetes Sci
Technol. 2009; 3(6): 1282-7.
Meneghini LF. Perioperative management of diabetes: translating
evidence into practice. Cleve Clin J Med. 2009;76(4):S53-S59.
Morrison S, O’Donnell J, Ren D, Henker R. Perioperative
glucose monitoring and treatment of patients undergoing
vascular surgery in a community hospital setting. AANA J. 2014;
(6): 427-30.
Beattie WS. Evidence-based perioperative risk reduction. Can J
Anesth. 2005; 52 Suppl 1:R17–R27. DOI: 10.1007/BF03023080.
Mukherjee D, Eagle KA. Perioperative cardiac assessment for
noncardiac surgery. Circulation. 2003; 107(22): 2771–4.
Dagogo-Jack S, Alberti KG. Management of diabetes mellitus
in surgical patients. Diabetes Spectr. 2002; 15(1): 44-8. DOI:
2337/diaspect.15.1.44.
Carles M, Raucoules-Aimé M. Prise en charge anesthésique du
patient diabétique. Presse Med. 2011; 40(6): 587-95.
Evans CH, Lee J, Ruhlman MK. Optimal glucose management in
the perioperative period. Surg Clin North Am. 2015; 95(2): 337-54.
Binder C, Lauritzen T, Faber O, Pramming S. Insulin
pharmacokinetics. Diabetes Care. 1984; 7(2): 188-99.
Sindelka G, Heinemann L, Berger M, Frenck W, Chantelau E.
Effect of insulin concentration, subcutaneous fat thickness and
skin temperature on subcutaneous insulin absorption in healthy
subjects. Diabetologia. 1994; 37(4): 377-80.
Lazar HL, McDonnell M, Chipkin SR, Furnary AP, Engelman
RM, Sadhu AR, et al. The Society of Thoracic Surgeons practice
guideline series: Blood glucose management during adult cardiac
surgery. Ann Thorac Surg. 2009; 87(2): 663-9.
Bell G, Dickson U, Arana A, Robinson D, Marshall C, Morton
N. Remifentanil vs fentanyl/morphine for pain and stress control
during pediatric cardiac surgery. Paediatr Anaesth. 2004; 14(10):
-60.
Swenne CL, Lindholm C, Borowiec J, Schnell AE, Carlsson
M. Perioperative glucose control and development of surgical
wound infections in patients undergoing coronary artery bypass
graft. J Hosp Infect. 2005; 61(3): 201-12.
Latham R, Lancaster AD, Covington JF, Pirolo JS, Thomas CS Jr.
The association of diabetes and glucose control with surgical-site
infections among cardiothoracic surgery patients. Infect Control
Hosp Epidemiol. 2001; 22(10): 607-12.
Trick WE, Scheckler WE, Tokars JI, Jones KC, Reppen ML, Smith
EM, et al. Modifiable risk factors associated with deep sternal
site infection after coronary artery bypass grafting. J Thorac
Cardiovasc Surg. 2000; 119(1): 108-14.
Ambiru S, Kato A, Kimura F, Shimizu H, Yoshidome H, Otsuka
M, et al. Poor postoperative blood glucose control increases
surgical site infections after surgery for hepato-biliary-pancreatic
cancer: a prospective study in a high-volume institute in Japan. J
Hosp Infect. 2008; 68(3): 230-3.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2017 Médicas UIS