Vol. 19 Núm. 3 (2020): Revista UIS Ingenierías
Artículos

Métodos numéricos para el desarrollo de una turbina hidrocinética tipo Gorlov

Juan Camilo Pineda-Ortiz
Universidad de Antioquia
Edwin Lenin Chica-Arrieta
Universidad de Antioquia

Publicado 2020-06-12

Palabras clave

  • métodos numéricos,
  • análisis estructural,
  • eficiencia energética,
  • método de elementos finitos,
  • método de volúmenes finitos,
  • FEA,
  • CFD,
  • análisis numérico
  • ...Más
    Menos

Cómo citar

Pineda-Ortiz, J. C., & Chica-Arrieta, E. L. (2020). Métodos numéricos para el desarrollo de una turbina hidrocinética tipo Gorlov. Revista UIS Ingenierías, 19(3), 187–206. https://doi.org/10.18273/revuin.v19n3-2020018

Resumen

Actualmente, a nivel mundial las energías alternativas han tomado gran importancia en las diversas aplicaciones relacionadas con el desarrollo del sector energético, entre las cuales podemos mencionar la energía solar, eólica, hidráulica, geotérmica y mareomotriz. Una nueva tecnología que aprovecha la energía cinética de la corriente de agua en canales naturales y/o artificiales e inclusive de las corrientes marinas son las turbinas hidrocinéticas. En este trabajo, se presenta un estudio de los diferentes métodos numéricos que pueden ser de utilidad para diseñar, analizar y optimizar sistemas de generación energética a partir de turbinas hidrocinéticas.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] N. Avendaño, R. H. Tabares y D. A. Ossa, “Zonas No Interconectadas - ZNI Diagnóstico de la Prestación del Servicio de Energía Eléctrica 2018”, Superintendencia de Servicios Públicos Domiciliarios Bogotá, 2018.

[2] P. Talukdar, V. Kulkarni, U. Saha, “Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation,” Renewable Energy, vol. 127, pp. 158-167, 2018. doi: 10.1016/j.renene.2018.04.052

[3] E. Chica, E. Torres, J. Arbeláez, “Manufacture and experimental evaluation of a hydrokinetic turbine for remote communities in Colombia,” Renewable Energy and Power Quality Journal, vol. 1, pp. 82-87, 2018. doi: 10.24084/repqj16.217

[4] N. Laws, B. Epps, “Hydrokinetic energy conversion: Technology, research, and outlook,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 1245-1259, 2016. doi: 10.1016/j.rser.2015.12.189

[5] M. Khan, G. Bhuyan, M. Iqbal, J. Quaicoe, “Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review,” Applied Energy, vol. 86, no. 10, pp. 1823-1835, 2009. doi: 10.1016/j.apenergy.2009.02.017

[6] E. L. Chica, A. Rubio, “Computational Fluid Dynamic Simulation of Vertical Axis Hydrokinetic Turbines,” en Computational Fluid Dynamics Simulations, Intechopen, 2019.

[7] J. Goundar, M. Ahmed, Y. Lee, "Numerical and experimental studies on hydrofoils for marine current turbines,” Renewable Energy, vol. 42, pp. 173-179, 2012. doi: 10.1016/j.renene.2011.07.048.

[8] G. Marturet, C. Torres, "Modelación numérica 2D en flujo estable en una turbina Gorlov", en IX Congreso Internacional de Métodos Numéricos en Ingeniería y Ciencias Aplicadas, La Asunción, Venezuela, 2012.

[9] A. Mata, "Diseño de una turbina hidrocinética para la realización de pruebas en un canal de ensayos hidráulicos, por el centro de investigaciones aplicadas (CIAP) de EDELCA", Trabajo de grado de Ingeniería Mecánica, UNEXPO, Puerto Ordaz, 2009.

[10] G. Marturet, E. Gutiérrez, S. Caraballo, "Series de fourier para la modelación de potenciales energéticos en turbinas helicoidales," Universidad Ciencia y Tecnología, vol. 19, no. 76, pp. 118-127, 2015.

[11] M. Shiono, K. Suzuki, S. Kiho, "Comparison of Water Turbine Characteristics using Different Blades in Darrieus Water Turbines used for Tidal Current Generations," IEEJ Transactions on Power and Energy, vol. 123, no. 1, pp. 76-82, 2003. doi: 10.1541/ieejpes.123.76

[12] I. Badea, M. Cojocaru, M. Pricop, A. Bobonea, "Design procedure and numerical analysis of a small horizontal-axis hydrokinetic turbine", UPB Scientific Bulletin, vol. 76, pp. 163-172, 2014.

[13] E. Bruce, "Numerical Modelling of a Gorlov Cross Flow Tidal Turbine,” en 3rd Oxford Tidal Energy Workshop (OTE), Oxford, UK, 2014, pp 9-10.

[14] A. Niblick, “Experimental and analytical study of helical cross-flow turbines for a tidal micropower generation system,” Master of science, University of Washington, 2012.

[15] J. Riglin, W. Schleicher, A. Oztekin, "Numerical analysis of a shrouded micro-hydrokinetic turbine unit,” Journal of Hydraulic Research, vol. 53, no. 4, pp. 525-531, 2015. doi: 10.1080/00221686.2015.1032375

[16] P. Marsh, D. Ranmuthugala, I. Penesis, G. Thomas, “Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines,” Renewable Energy, vol. 81, pp. 926-935, 2015. doi: 10.1016/j.renene.2015.03.083

[17] M. Castelli, E. Benini, “Effect of Blade Inclination Angle on a Darrieus Wind Turbine”, Journal of Turbomachinery, vol. 134, no. 3, 2011. doi: 10.1115/1.4003212

[18] G. Marturet, "Análisis numérico para la determinación de eficiencias hidráulicas en turbinas de flujo libre. Ingeniería y Ciencias Aplicadas: Modelos Matemáticos y Computacionales", en Memorias del XII Congreso Internacional de Métodos Numéricos en Ingeniería y Ciencias Aplicadas, Pampatar, Venezuela, 2014.

[19] E. Chica, F. Pérez, A. Rubio, S. Agudelo, “Design of a hydrokinetic turbine,” en Energy and Sustainability VI, Medellín, 2015, pp 137-148. doi: 10.2495/ESUS150121

[20] D. Kumar, S. Sarkar, “Numerical investigation of hydraulic load and stress induced in Savonius hydrokinetic turbine with the effects of augmentation techniques through fluid-structure interaction analysis,” Energy, vol. 116, pp. 609-618, 2016. doi: 10.1016/j.energy.2016.10.012

[21] C. Daskiran, J. Riglin, A. Oztekin, “Numerical Analysis of Blockage Ratio Effect on a Portable Hydrokinetic Turbine,” en Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, Arizona, USA, 2016.

[22] G. Tampier, C. Troncoso, F. Zilic, “Numerical analysis of a diffuser-augmented hydrokinetic turbine,” Ocean Engineering, vol. 145, pp. 138-147, 2017. doi: 10.1016/j.oceaneng.2017.09.004

[23] P. Jamieson, Innovation in Wind Turbine Design. Chichester, UK: Wiley & Sons, Ltd., 2011.

[24] A. Fontaine, W. Straka, R. MeyerM. Jonson, “A 1:8.7 Scale Water Tunnel Verification & Validation Test of an Axial Flow Water Turbine”. The Pennsylvania State University, Pensilvania, PA, USA, Tech. Rep. TR 13‐002, ago. 2013.

[25] A. Muratoglu y M. Yuce, "Design of a River Hydrokinetic Turbine Using Optimization and CFD Simulations," Journal of Energy Engineering, vol. 143, no. 4, p. 04017009, 2017. doi: 10.1061/(asce)ey.1943-7897.0000438

[26] T. Javaherchi, N. Stelzenmuller, A. Aliseda, “Experimental and numerical analysis of the performance and wake of a scale–model horizontal axis marine hydrokinetic turbine,” Journal of Renewable and Sustainable Energy, vol. 9, no. 4, p. 044504, 2017. doi: 10.1063/1.4999600

[27] G. Saini, R. Saini, “A numerical analysis to study the effect of radius ratio and attachment angle on hybrid hydrokinetic turbine performance,” Energy for Sustainable Development, vol. 47, pp. 94-106, 2018. doi: 10.1016/j.esd.2018.09.005.

[28] Y. Kyozuka, “An Experimental Study on the Darrieus-Savonius Turbine for the Tidal Current Power Generation”, Journal of Fluid Science and Technology, vol. 3, no. 3, pp. 439-449, 2008. doi: 10.1299/jfst.3.439

[29] K. Sahim, K. Ihtisan, D. Santoso, R. Sipahutar, “Experimental Study of Darrieus-Savonius Water Turbine with Deflector: Effect of Deflector on the Performance,” International Journal of Rotating Machinery, vol. 2014, pp. 1-6, 2014. doi: 10.1155/2014/203108

[30] M. Mohamed, “Performance investigation of H-rotor Darrieus turbine with new airfoil shapes,” Energy, vol. 47, no. 1, pp. 522-530, 2012. doi: 10.1016/j.energy.2012.08.044

[31] X. Liang, S. Fu, B. Ou, C. Wu, C. Chao, K. Pi, "A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus-Savonius combined wind turbine”, Renewable Energy, vol. 113, pp. 329-334, 2017. doi: 10.1016/j.renene.2017.04.071

[32] E. Chica et al., “Experimental Investigations and CFD Simulations of the Blade Section Pitch Angle Effect on the Performance of a Horizontal-Axis Hydrokinetic Turbine,” Engineering Journal, vol. 22, no. 5, pp. 141-154, 2018. doi: 10.4186/ej.2018.22.5.141

[33] B. Zhang, K. Wang, B. Song, Z. Mao, W. Tian, “Numerical investigation on the effect of the cross-sectional aspect ratio of a rectangular cylinder in FIM on hydrokinetic energy conversion,” Energy, vol. 165, pp. 949-964, 2018. doi: 10.1016/j.energy.2018.09.138

[34] R. Soenoko, P. H. Setyarini, F. Gapsari, “Numerical Modeling and Investigation of Hydrokinetic Turbine with Additional Steering Blade Using CFD”, Journal of Engineering and Applied Sciences, vol. 13, no. 22, pp. 8589-8598, 2018.

[35] K. Madu, M. Orji, A. Uyaelumuo, “Fluid structure interaction analysis of a micro-hydrokinetic turbine rotor blade”, Research Journal of Mechanical Operations, vol. 1, no. 1, pp. 10-23, 2018.

[36] J. Gu, F. Cai, N. Müller, Y. Zhang, H. Chen, “Two-Way Fluid–Solid Interaction Analysis for a Horizontal Axis Marine Current Turbine with LES,” Water, vol. 12, no. 1, pp. 98, 2019. doi: 10.3390/w12010098

[37] M. Al-Dabbagh, M. Yuce, “Numerical evaluation of helical hydrokinetic turbines with different solidities under different flow conditions,” International Journal of Environmental Science and Technology, vol. 16, no. 8, pp. 4001-4012, 2018. doi: 10.1007/s13762-018-1987-1

[38] I. Tunio, M. Shah, T. Hussain, K. Harijan, N. Mirjat A. Memon, “Investigation of duct augmented system effect on the overall performance of straight blade Darrieus hydrokinetic turbine,” Renewable Energy, vol. 153, pp. 143-154, 2020. doi: 10.1016/j.renene.2020.02.012

[39] H. Alizadeh, M. Jahangir, R. Ghasempour, “CFD-based improvement of Savonius type hydrokinetic turbine using optimized barrier at the low-speed flows,” Ocean Engineering, vol. 202, pp. 107178, 2020. doi: 10.1016/j.oceaneng.2020.107178

[40] C. Daskiran, J. Riglin, W. Schleicher, A. Oztekin, “Transient analysis of micro-hydrokinetic turbines for river applications,” Ocean Engineering, vol. 129, pp. 291-300, 2017. doi: 10.1016/j.oceaneng.2016.11.020

[41] G. Richmond, “Modelos de turbulencia introductorio,” Instituto Tecnológico de Costa Rica, Provincia de Cartago, Costa Rica, 2019.

[42] P.K. Talukdar, V. Kulkarni, A.K. Das, S.K. Dwivedy, S.K. Kakoti, P. Mahanta, U.K. Saha, “In-situ experiments to estimate the performance characteristics of a double-step helical bladed hydrokinetic turbine, Paper No. GTINDIA 2017- 4572,” en: ASME Gas Turbine India Conference, Bangalore, India, 2017. Doi: 10.1115/GTINDIA2017-4572

[43] A. Gorlov, “Development of the helical reaction hydraulic turbine,” Inf. Tec. (DE-FGO1-96EE 15669), DOE/EE/15669-TI, 1998.

[44] P. Bachant, M. Wosnik, “Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency,” Renewable Energy, vol. 74, pp. 318-325, 2015. doi: 10.1016/j.renene.2014.07.049

[45] P. K. Talukdar, S. Kumar, V. Kulkarni, A. K. Das, U. K. Saha, “Onsite testing of a zero head verticalaxis helical water turbine for power generation, Paper No. GTINDIA 2015-1230,” en ASME 2015 Gas Turbine India Conference, Hyderabad, India, 2015.

[46] J. Tsai, F. Chen, “The Conceptual Design of a Tidal Power Plant in Taiwan,” Journal of Marine Science and Engineering, vol. 2, no. 2, pp. 506-533, 2014. doi: 10.3390/jmse2020506