Vol. 23 Núm. 3 (2024): Revista UIS Ingenierías
Artículos

Consideraciones del diseño de la cámara de resonancia de una columna de agua oscilante

Juan David Parra-Quintero
Universidad de Antioquia
Ainhoa Rubio- Clemente
Universidad de Antioquia
Edwin Lenin Chica-Arrieta
Universidad de Antioquia

Publicado 2024-09-30

Palabras clave

  • ANSYS,
  • diseño,
  • simulación numérica,
  • energía renovable,
  • energía de las olas

Cómo citar

Parra-Quintero, J. D., Rubio- Clemente, A., & Chica-Arrieta, E. L. (2024). Consideraciones del diseño de la cámara de resonancia de una columna de agua oscilante. Revista UIS Ingenierías, 23(3), 117–140. https://doi.org/10.18273/revuin.v23n3-2024010

Resumen

Uno de los dispositivos más prometedores para aprovechar la energía de las olas es la columna de agua oscilante (OWC, por sus siglas en inglés). Desde su creación, se ha puesto de manifiesto que este dispositivo ha sido objeto de múltiples investigaciones centradas en mejorar su eficiencia hidrodinámica. Existen varios factores geométricos que intervienen en la eficiencia de la cámara de resonancia de agua. Entre estos parámetros destacan la longitud o anchura interna, el ángulo de inclinación de la pared frontal y la profundidad de inmersión, así como el diámetro de salida del aire. En este sentido, resulta crucial discernir la importancia de estos factores y sus interacciones en el proceso de captación de la energía contenida en el frente de onda para la posterior optimización del diseño de este tipo de estructuras. Para ello, la metodología de superficie de respuesta o los modelos subrogados se consideran una buena opción para estudiar la sensibilidad de estos factores sobre su efecto en la eficiencia de la cámara resonante. En este trabajo, se describe el proceso investigativo sobre las principales consideraciones para el diseño de una cámara de resonancia OWC bajo una amplia variedad de condiciones de oleaje.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. R. Abbasi, M. J. Ketabdari, “Enhancement of OWC Wells turbine efficiency and performance using riblets covered blades, a numerical study,” Energy Convers. Manag., vol. 254, no. December 2021, p. 115212, 2022, doi: https://doi.org/10.1016/j.enconman.2022.115212
  2. A. T. Kotb, M. A. Nawar, Y. A. Attai, M. H. Mohamed, “Performance optimization of a modified Wells turbine for wave energy conversion,” Ocean Eng., vol. 280, no. May, p. 114849, 2023, doi: https://doi.org/10.1016/j.oceaneng.2023.114849
  3. M. W. Power, “Flow Control in Wells Turbines for Harnessing Maximum Wave Power,” Sensors, vol. 18, no. 2, 2018, doi: https://doi.org/10.3390/s18020535
  4. R. Ahamed, K. McKee, I. Howard, “Advancements of wave energy converters based on power take off (PTO) systems: A review,” Ocean Eng., vol. 204, no. March, p. 107248, 2020, doi: https://doi.org/10.1016/j.oceaneng.2020.107248
  5. A. Çelik, A. Altunkaynak, “Experimental investigations on the performance of a fixed-oscillating water column type wave energy converter,” Energy, vol. 188, 2019, doi: https://doi.org/10.1016/j.energy.2019.116071
  6. T. Gómez-Navarro, D. Ribó-Pérez, “Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia,” Renew. Sustain. Energy Rev., vol. 90, no. September, 2016, pp. 131–141, 2018, doi: https://doi.org/10.1016/j.rser.2018.03.015
  7. O. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, M. Pourkashanian, “Renewable energy production and demand dataset for the energy system of Colombia,” Data Br., vol. 28, p. 105084, 2020, doi: https://doi.org/10.1016/j.dib.2019.105084
  8. A. Perez, J. J. Garcia-Rendon, “Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia,” Renew. Energy, vol. 167, pp. 146–161, 2021, doi: https://doi.org/10.1016/j.renene.2020.11.067
  9. A. María, A. M. Rosso-Cerón, and V. Kafarov, “Barriers to social acceptance of renewable energy systems in Colombia”, Current Opinion in Chemical Engineering, vol. 10. 2015, pp. 103–110. doi: https://doi.org/10.1016/j.coche.2015.08.003
  10. X. Wang, Y. Lu, C. Chen, X. Yi, H. Cui, “Total-factor energy efficiency of ten major global energy-consuming countries,” J. Environ. Sci., vol. 137, pp. 41–52, 2024, doi: https://doi.org/10.1016/j.jes.2023.02.031
  11. S. A. Gil Ruiz, J. E. C. Barriga, and J. A. Martínez, “Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data,” Renew. Energy, vol. 172, pp. 158–176, 2021, doi: https://doi.org/10.1016/j.renene.2021.03.033
  12. J. G. Rueda-Bayona, A. Guzmán, J. J. C. Eras, R. Silva-Casarín, E. Bastidas-Arteaga, J. Horrillo-Caraballo, “Renewables energies in Colombia and the opportunity for the offshore wind technology,” J. Clean. Prod., vol. 220, pp. 529–543, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.02.174
  13. UPME and Unidad de Planeación Minero Energética (UPME), “National Energy Plan 2020-2050,” Bogotá, 2019. [Online]. Available: https://www1.upme.gov.co/DemandaEnergetica/UPME_Presentacion_PEN_V48.pdf
  14. Ministerio de Minas y Energía de Colombia (MinMinas), “La transición energética de Colombia.” [Online]. Available: https://www.minenergia.gov.co/documents/5744/Memorias_al_Congreso_2019-2020.pdf
  15. D. Clemente, P. Rosa-Santos, and F. Taveira-Pinto, “On the potential synergies and applications of wave energy converters: A review,” Renew. Sustain. Energy Rev., vol. 135, 2020, p. 110162, 2021, doi: https://doi.org/10.1016/j.rser.2020.110162
  16. M. F. Ashby, Materials and Sustainable Development. Butterworth-Heinemann: Cambridge, 2024, doi: https://doi.org/10.1016/C2021-0-00557-5
  17. P. J. Mcnicholas, R. G. Floyd, L. E. Fennimore, S. A. Fitzpatrick, “Determining journal article citation classics in school psychology: An updated bibliometric analysis using Google Scholar, Scopus, and Web of Science,” J. Sch. Psychol., vol. 90, no. December 2021, pp. 94–113, 2022, doi: https://doi.org/10.1016/j.jsp.2021.11.001
  18. S. D. Meyers, L. Azevedo, M. E. Luther, “A Scopus-based bibliometric study of maritime research involving the Automatic Identification System,” Transp. Res. Interdiscip. Perspect., vol. 10, no. May, p. 100387, 2021, doi: https://doi.org/10.1016/j.trip.2021.100387
  19. T. Aderinto, H. Li, “Ocean Wave energy converters: Status and challenges,” Energies, vol. 11, no. 5, pp. 1–26, 2018, doi: https://doi.org/10.3390/en11051250
  20. A. Terrero et al., “Is wave energy untapped potential?,” Int. J. Mech. Sci., vol. 205, no. February, p. 106544, 2021, doi: https://doi.org/10.1016/j.ijmecsci.2021.106544
  21. M. Shadman, C. Silva, D. Faller, et. al, “Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil”, Energies, vol. 12, no. 19, 2019, doi: https://doi.org/10.3390/en12193658
  22. L. de Oliveira, I. F. S. dos Santos, N. L. Schmidt, G. L. Tiago Filho, R. G. R. Camacho, R. M. Barros, “Economic feasibility study of ocean wave electricity generation in Brazil,” Renew. Energy, vol. 178, pp. 1279–1290, 2021, doi: https://doi.org/10.1016/j.renene.2021.07.009
  23. F. He, Z. Huang, A. Wing-Keung Law, “Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers: an experimental study,” Ocean Eng., vol. 51, pp. 16–27, 2012, doi: https://doi.org/10.1016/j.oceaneng.2012.05.008
  24. A. Elhanafi, G. Macfarlane, A. Fleming, Z. Leong, “Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter,” Appl. Energy, vol. 205, no. July, pp. 369–390, 2017, doi: https://doi.org/10.1016/j.apenergy.2017.07.138
  25. A. Kamath, H. Bihs, Ø. A. Arntsen, “Numerical investigations of the hydrodynamics of an oscillating water column device,” Ocean Eng., vol. 102, pp. 40–50, 2015, doi: https://doi.org/10.1016/j.oceaneng.2015.04.043
  26. D. H. Yacob, S. Sarip, H. M. Kaidi, J. A. Ardila-Rey, F. Muhammad-Sukki, “Oscillating Water Column Geometrical Factors and System Performance: A Review,” IEEE Access, vol. 10, pp. 32104–32122, 2022, doi: https://doi.org/10.1109/access.2022.3160713
  27. S. Foteinis, “Wave energy converters in low energy seas: Current state and opportunities,” Renew. Sustain. Energy Rev., vol. 162, 2021, p. 112448, 2022, doi: https://doi.org/10.1016/j.rser.2022.112448
  28. B. Guo, J. V. Ringwood, “Geometric optimisation of wave energy conversion devices: A survey,” Appl. Energy, vol. 297, p. 117100, 2021, doi: https://doi.org/10.1016/j.apenergy.2021.117100
  29. S. S. Prakash et al., “Wave Energy Converter: A Review of Wave Energy Conversion Technology,” in 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), IEEE, pp. 71–77, 2016, doi: https://doi.org/10.1109/APWC-on-CSE.2016.023
  30. L. Rusu, F. Onea, “The performance of some state of the art wave energy converters in locations with the worldwide highest wave power,” Renew. Sustain. Energy Rev., no. August 2015, pp. 0–1, 2016, doi: https://doi.org/10.1016/j.rser.2016.11.123
  31. J. D. Restrepo and S. A. López, “Morphodynamics of the Pacific and Caribbean deltas of Colombia, South America,” J. South Am. Earth Sci., vol. 25, no. 1, pp. 1–21, 2008, doi: https://doi.org/10.1016/j.jsames.2007.09.002
  32. J. Portilla, A. L. Caicedo, R. Padilla-Hernández, L. Cavaleri, “Spectral wave conditions in the Colombian Pacific Ocean,” Ocean Model., vol. 92, pp. 149–168, 2015, doi: https://doi.org/10.1016/j.ocemod.2015.06.005
  33. A. F. Osorio, S. Ortega, S. Arango-Aramburo, “Assessment of the marine power potential in Colombia,” Renew. Sustain. Energy Rev., vol. 53, pp. 966–977, 2016, doi: https://doi.org/10.1016/j.rser.2015.09.057
  34. A. F. Osorio, R. D. Montoya, J. C. Ortiz, D. Peláez, “Construction of synthetic ocean wave series along the Colombian Caribbean Coast: A wave climate analysis,” Appl. Ocean Res., vol. 56, pp. 119–131, 2016, doi: https://doi.org/10.1016/j.apor.2016.01.004
  35. C. M. Appendini, A. Torres-Freyermuth, P. Salles, J. López-González, E. T. Mendoza, “Wave climate and trends for the Gulf of Mexico: A 30-yr wave hindcast,” J. Clim., vol. 27, no. 4, pp. 1619–1632, 2014, doi: https://doi.org/10.1175/JCLI-D-13-00206.1
  36. C. Wang, “Variability of the Caribbean Low-Level Jet and its relations to climate,” Clim. Dyn., vol. 29, no. 4, pp. 411–422, 2007, doi: https://doi.org/10.1007/s00382-007-0243-z
  37. I. Simonetti, L. Cappietti, H. Elsafti, H. Oumeraci, “Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study,” Energy, vol. 139, pp. 1197–1209, 2017, doi: https://doi.org/10.1016/j.energy.2017.08.033
  38. A. Falcão, J. C. C. Henriques, “Oscillating water column wave energy converters and air turbines: A review,” Renew. Energy, vol. 85, pp. 1391–1424, 2016, doi: https://doi.org/10.1016/j.renene.2015.07.086
  39. I. López, B. Pereiras, F. Castro, G. Iglesias, “Performance of OWC wave energy converters: influence of turbine damping and tidal variability,” Energy Res., no. August 2014, pp. 472–483, 2015, doi: https://doi.org/10.1002/er.3239
  40. D. Z. Ning, R. Q. Wang, Q. P. Zou, B. Teng, “An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter,” Appl. Energy, vol. 168, pp. 636–648, 2016, doi: https://doi.org/10.1016/j.apenergy.2016.01.107
  41. T. Vyzikas, S. Deshoulières, M. Barton, O. Giroux, D. Greaves, D. Simmonds, “Experimental investigation of different geometries of fixed OWC devices,” Renew. Energy, vol. 104, pp. 248–258, 2017, doi: https://doi.org/10.1016/j.renene.2016.11.061
  42. S. Shareen Abbasi, T. Hee Min, S. H. Shafiai, S. Yi Theng, L. Chai Heng, “Design Enhancement of an Oscillating Water Column for Harnessing of Wave Energy,” ARPN Journal of Engineering and Applied Sciences, vol. 12, no. 16, pp. 4791–4795, 2017.
  43. J. S. Kim, B. W. Nam, K.-H. Kim, S. Park, S. H. Shin, K. Hong, “A numerical study on hydrodynamic performance of an inclined OWC wave energy converter with nonlinear turbine-chamber interaction based on 3D potential flow,” J. Mar. Sci. Eng., vol. 8, no. 3, 2020, doi: https://doi.org/10.3390/jmse8030176
  44. F. Mahnamfar, A. Altunkaynak, “Comparison of numerical and experimental analyses for optimizing the geometry of OWC systems,” Ocean Eng., vol. 130, pp. 10–24, 2017, doi: https://doi.org/10.1016/j.oceaneng.2016.11.054
  45. B. Bouali, S. Larbi, “Contribution to the Geometry Optimization of an Oscillating Water Column Wave Energy Converter,” Energy Procedia, vol. 36, pp. 565–573, 2013, doi: https://doi.org/10.1016/j.egypro.2013.07.065
  46. D. Howe, J. Nader, “OWC WEC Integrated within a Breakwater versus Isolated: Experimental and Numerical Theoretical Study,” Int. J. Mar. Energy, 2017, doi: https://doi.org/10.1016/j.ijome.2017.07.008
  47. A. Elhanafi, G. Macfarlane, A. Fleming, Z. Leong, “Experimental and numerical investigations on the intact and damage survivability of a floating moored oscillating water column device,” Appl. Ocean Res., vol. 68, pp. 276–292, 2017, doi: https://doi.org/10.1016/j.apor.2017.09.007
  48. M. das N. Gomez, G. Lorenzini, L. A. O. Rocha, E. D. dos Santos, L. A. Isoldi, “Constructal Design Applied to the Geometric Evaluation of an Oscillating Water Column Wave Energy Converter Considering Different Real Scale Wave Periods,” J. Eng. Thermophys., vol. 27, no. 2, pp. 173–190, 2018, doi: https://doi.org/10.1134/S1810232818020042
  49. M. Letzow, Lorenzini, “Numerical analysis of the influence of geometry on a large scale onshore oscillating water column device with associated seabed ramp,” Int. J. Des. Nat. Ecodynamics, vol. 15, no. 6, pp. 873–884, 2020, doi: https://doi.org/10.18280/ijdne.150613
  50. P. Boccotti, “Comparison between a U-OWC and a conventional OWC,” Ocean Eng., vol. 34, no. 5–6, pp. 799–805, 2007, doi: https://doi.org/10.1016/j.oceaneng.2006.04.005
  51. P. D. Spanos, F. Maria, G. Malara, F. Arena, “An approach for non-linear stochastic analysis of U-shaped OWC wave energy converters,” Probabilistic Eng. Mech., vol. 54, no. June 2017, pp. 44–52, 2018, doi: https://doi.org/10.1016/j.probengmech.2017.07.001
  52. D. Ning et al., “Geometrical investigation of a U-shaped oscillating water column wave energy device,” Appl. Ocean Res., vol. 97, no. January, p. 102105, 2020, doi: https://doi.org/10.1016/j.apor.2020.102105
  53. L. Gurnari, P. G. Filianoti, S. M. Camporeale, “Fluid dynamics inside a U-shaped oscillating water column (OWC): 1D vs 2D CFD model,” Renew. Energy, vol. 193, pp. 687–705, Jun. 2022, doi: https://doi.org/10.1016/j.renene.2022.05.025
  54. N. Fonseca, J. Pessoa, “Numerical modeling of a wave energy converter based on U-shaped interior oscillating water column,” Applied Ocean Research, vol. 40, pp. 60–73, 2013, doi: https://doi.org/10.1016/j.apor.2013.01.002
  55. G. Moretti, G. Malara, A. Scialò, L. Daniele, A. Romolo, R. Vertechy, M. Fontana, “Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator,” Renewable Energy, vol. 146, pp. 628–642, 2020, doi: https://doi.org/10.1016/j.renene.2019.06.077
  56. L. A. Gaspar, P. R. Teixeira, E. Didier, “Numerical analysis of the performance of two onshore oscillating water column wave energy converters at different chamber wall slopes,” Ocean Eng., vol. 201, no. June 2019, p. 107119, 2020, doi: https://doi.org/10.1016/j.oceaneng.2020.107119
  57. M. Kharati-Koopaee, A. Fathi-Kelestani, “Assessment of oscillating water column performance: influence of wave steepness at various chamber lengths and bottom slopes,” Renew. Energy, vol. 147, pp. 1595–1608, 2020, doi: https://doi.org/10.1016/j.renene.2019.09.110
  58. B. Bouali, S. Larbi, “Sequential optimization and performance prediction of an oscillating water column wave energy converter,” Ocean Eng., vol. 131, no. January, pp. 162–173, 2017, doi: https://doi.org/10.1016/j.oceaneng.2017.01.004
  59. M. Hayati, A. H. Nikseresht, A. T. Haghighi, “Sequential optimization of the geometrical parameters of an OWC device based on the specific wave characteristics,” Renew. Energy, vol. 161, pp. 386–394, 2020, doi: https://doi.org/10.1016/j.renene.2020.07.073
  60. A. A. M. Rodríguez, J. M. B. Ilzarbe, R. S. Casarín, U. I. Ereño, “The influence of the chamber configuration on the hydrodynamic efficiency of oscillating water column devices,” J. Mar. Sci. Eng., vol. 8, no. 10, pp. 1–27, 2020, doi: https://doi.org/10.3390/jmse8100751
  61. M. Shahabi-Nejad, A. H. Nikseresht, “A comprehensive investigation of a hybrid wave energy converter including oscillating water column and horizontal floating cylinder,” Energy, vol. 243, p. 122763, 2022, doi: https://doi.org/10.1016/j.energy.2021.122763
  62. Z. Deng, C. Wang, P. Wang, P. Higuera, R. Wang, “Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study,” Energy, vol. 187, p. 115941, 2019, doi: https://doi.org/10.1016/j.energy.2019.115941
  63. C. Wang and Y. Zhang, “Hydrodynamic performance of an offshore OWC mounted over an immersed horizontal plate : A numerical study,” Energy, vol. 222, p. 119964, 2021, doi: https://doi.org/10.1016/j.energy.2021.119964
  64. M. Rashed, M. Zhao, H. Wu, A. Munir, “Numerical investigation of offshore oscillating water column devices,” Renew. Energy, vol. 191, pp. 380–393, 2022, doi: https://doi.org/10.1016/j.renene.2022.04.069
  65. D. Gallutia, M. Tahmasbi, M. Gutierrez, J. He, “Recent advances in wave energy conversion systems: From wave theory to devices and control strategies,” Ocean Eng., vol. 252, no. March, p. 111105, 2022, doi: https://doi.org/10.1016/j.oceaneng.2022.111105
  66. E. J. Ransley, D. Greaves, A. Raby, D. Simmonds, M. Hann, “Survivability of wave energy converters using CFD,” Renew. Energy, vol. 109, pp. 235–247, 2017, doi: https://doi.org/10.1016/j.renene.2017.03.003
  67. Y. Zhang, X. Zhao, J. Geng, L. Tao, “A novel concept for reducing wave reflection from OWC structures with application of harbor agitation mitigation / coastal protection: theoretical investigations,” Ocean Eng., vol. 242, no. November, p. 110075, 2021, doi: https://doi.org/10.1016/j.oceaneng.2021.110075
  68. C. Tsai, C. Ko, Y. Chen, “Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter,” Sustainability, pp. 1–20, 2018, doi: https://doi.org/10.3390/su10030643
  69. A. Çelik, “An experimental investigation into the effects of front wall geometry on OWC performance for various levels of applied power take off dampings,” Ocean Eng., vol. 248, no. February, p. 110761, 2022, doi: https://doi.org/10.1016/j.oceaneng.2022.110761
  70. J. Zhan, Q. Fan, W. Hu, Y. Gong, “Hybrid realizable k-ε/laminar method in the application of 3D heaving OWCs,” Renew. Energy, vol. 155, pp. 691–702, 2020, doi: https://doi.org/10.1016/j.renene.2020.03.140
  71. S. J. Ashlin, V. Sundar, and S. A. Sannasiraj, “Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics,” Renew. Energy, vol. 96, pp. 341–353, 2016, doi: https://doi.org/10.1016/j.renene.2016.04.091
  72. K. Rezanejad, J. Bhattacharjee, C. G. Soares, “Stepped sea bottom effects on the efficiency of nearshore oscillating water column device,” Ocean Eng., vol. 70, pp. 25–38, 2013, doi: https://doi.org/10.1016/j.oceaneng.2013.05.029
  73. A. Elhanafi, G. Macfarlane, D. Ning, “Hydrodynamic performance of single chamber and dual chamber offshore stationary Oscillating Water Column devices using CFD,” Appl. Energy, vol. 228, no. June, pp. 82–96, 2018, doi: https://doi.org/10.1016/j.apenergy.2018.06.069
  74. A. T. Haghighi, A. H. Nikseresht, M. Hayati, “Numerical analysis of hydrodynamic performance of a dual-chamber Oscillating Water Column,” Energy, vol. 221, p. 119892, 2021, doi: https://doi.org/10.1016/j.energy.2021.119892
  75. A. Elhanafi, G. Macfarlane, A. Fleming, Z. Leong, “Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter,” Appl. Energy, vol. 189, pp. 1–20, 2017, doi: https://doi.org/10.1016/j.apenergy.2016.11.095
  76. K. Monk, V. Winands, M. Lopes, “Chamber pressure skewness corrections using a passive relief valve system at the Pico oscillating water column wave energy plant,” Renew. Energy, 2018, doi: https://doi.org/10.1016/j.renene.2018.04.037
  77. I. Simonetti, L. Cappietti, H. Elsafti, H. Oumeraci, “Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling,” Renew. Energy, 2017, doi: https://doi.org/10.1016/j.renene.2017.12.027
  78. A. A. Medina Rodríguez, R. Silva Casarín, J. M. Blanco Ilzarbe, “The influence of oblique waves on the hydrodynamic efficiency of an onshore OWC wave energy converter,” Renew. Energy, vol. 183, pp. 687–707, 2022, doi: https://doi.org/10.1016/j.renene.2021.11.061
  79. J.C. Martins, M.M. Goulart, M. das N. Gomes, J.A. Souza, L.A.O. Rocha, L.A. Isoldi, “Geometric evaluation of the main operational principle of an overtopping wave energy converter by means of Constructal Design,” Renew. Energy, vol. 118, pp. 727–741, 2018, doi: https://doi.org/10.1016/j.renene.2017.11.061
  80. N. Gomes et al., “Analysis of the Geometric Constraints Employed in Constructal Design for Oscillating Water Column Devices Submitted to the Wave Spectrum Through a Numerical Approach,” Defect Diffus. Forum, vol. 390, pp. 193–210, 2019, doi: https://doi.org/10.4028/www.scientific.net/DDF.390.193
  81. Y. Theodoro et al., “Geometric Analysis through the Constructal Design of a Sea Wave Energy Converter with Several Coupled Hydropneumatic Chambers Considering the Oscillating Water Column Operating Principle,” Appl. Sci., vol. 11, no. 18, 2021, doi: https://doi.org/10.3390/app11188630
  82. Y. Lima, M. Gomes, C. Cardozo, L. Isoldi, E. Santos, L. Rocha, “Analysis of geometric variation of three degrees of freedom through the constructal design method for a Oscillating Water Column device with Double hidropneumatic chamber,” Defect Diffus. Forum, vol. 396, pp. 22–31, 2019, doi: https://doi.org/10.4028/www.scientific.net/DDF.396.22
  83. W. Zhang, Z. Huang, M. Kang, M. Shi, R. Deng, “Research on multivariate nonlinear regression model of specific energy of rock with laser drilling based on response surface methodology,” Opt. Commun., vol. 489, no. January, p. 126865, 2021, doi: https://doi.org/10.1016/j.optcom.2021.126865
  84. J. Betancour, L. Vel, E. Chica, “Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology,” Renewable Energy, vol. 172, 2021, doi: https://doi.org/10.1016/j.renene.2021.03.076
  85. M. Almeida, S. Luis, C. Ferreira, C. Galvão, A. Maria, G. Souza, “Simultaneous optimization of multiple responses and its application in Analytical Chemistry - A review,” Talanta, vol. 194, pp. 941–959, 2019, doi: https://doi.org/10.1016/j.talanta.2018.10.088
  86. P. Matias-Guiu, J. Rodríguez-Bencomo, J. Pérez-Correa, F. López, “Aroma profile design of wine spirits: Multi-objective optimization using response surface methodology,” Food Chem., vol. 245, pp. 1087–1097, 2018, doi: https://doi.org/10.1016/j.foodchem.2017.11.062
  87. N. Prajapati, P. Kodgire, S. Singh, “Materials today: Proceedings comparison of RSM Based FFD and CCD methods forniodiesel production using microwave technique,” Materials Today Proceedings, vol. 62, pp. 6985–6991, 2022, doi: https://doi.org/10.1016/j.matpr.2021.12.379
  88. C. Muthukumar, E. Iype, K. Raju, S. Pulletikurthi, “Sunlight assisted photocatalytic degradation using the RSM-CCD optimized sustainable photocatalyst synthesized from galvanic wastewater,” J. Mol. Struct., vol. 1263, p. 133194, 2022, doi: https://doi.org/10.1016/j.molstruc.2022.133194
  89. Y. Cui, Z. Liu, X. Zhang, C. Xu, “Review of CFD studies on axial-flow self-rectifying turbines for OWC wave energy conversion,” Ocean Eng., vol. 175, no. December 2018, pp. 80–102, 2019, doi: https://doi.org/10.1016/j.oceaneng.2019.01.040
  90. J. Falnes, Ocean Waves And Oscillating Systems. Cambridge University Press, 2005.
  91. K. Trivedi, A. R. Ray, P. A. Krishnan, S. Koley, and T. Sahoo, “Hydrodynamics of an OWC Device in Irregular Incident Waves Using RANS Model,” Fluids, vol. 8, no. 1, pp. 1–31, 2023, doi: https://doi.org/10.3390/fluids8010027
  92. M. H. Dao, L. W. Chew, Y. Zhang, “Modelling physical wave tank with flap paddle and porous beach in OpenFOAM,” Ocean Eng., vol. 154, no. March 2017, pp. 204–215, 2018, doi: https://doi.org/10.1016/j.oceaneng.2018.02.024
  93. F. Opoku, M. N. Uddin, M. Atkinson, “A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach,” Renew. Sustain. Energy Rev., vol. 174, p. 113124, 2023, doi: https://doi.org/10.1016/j.rser.2022.113124
  94. Ley 1715 de 2014, “Por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional,” Congreso de la República de Colombia. [Online]. Available: http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html
  95. Ley 2099 de 2021, “Por medio de la cual se dictan disposiciones para la transición energética, la dinamización del mercado energético, la reactivación económica del país y se dictan otras disposiciones,” Congreso de la República de Colombia. [Online]. Available: http://www.secretariasenado.gov.co/senado/basedoc/ley_2099_2021.html
  96. F. R. Menco, A. Rubio-Clemente, E. Chica, “Design of a wave energy converter system for the Colombian Pacific Ocean,” Rev. Fac. Ing., no. 94, pp. 8–23, 2020, doi: https://doi.org/10.17533/udea.redin.20190406
  97. D. D. Prasad, M. R. Ahmed, Y. H. Lee, R. N. Sharma, “Validation of a piston type wave-maker using Numerical Wave Tank,” Ocean Eng., vol. 131, no. November 2014, pp. 57–67, 2017, doi: https://doi.org/10.1016/j.oceaneng.2016.12.031
  98. I. López, J. Andreu, S. Ceballos, I. Martínez De Alegría, I. Kortabarria, “Review of wave energy technologies and the necessary power-equipment,” Renew. Sustain. Energy Rev., vol. 27, pp. 413–434, 2013, doi: https://doi.org/10.1016/j.rser.2013.07.009
  99. V. Heath, “A review of oscillating water columns,” R. Soc., pp. 235–245, 2012, doi: https://doi.org/10.1098/rsta.2011.0164
  100. A. Falcão, “Wave energy utilization: a review of the technologies,” Renew. Sustain. Energy Rev., vol. 14, no. 3, pp. 899–918, 2010, doi: https://doi.org/10.1016/j.rser.2009.11.003
  101. F. Arena, A. Romolo, G. Malara, V. Fiamma, V. Laface, “The first full operative U-OWC plants in the port of Civitavecchia,” Proc. Int. Conf. Offshore Mech. Arct. Eng. - OMAE, vol. 10, pp. 1–11, 2017, doi: https://doi.org/10.1115/OMAE2017-62036
  102. S. Doyle, G. A. Aggidis, “Development of multi-oscillating water columns as wave energy converters,” Renew. Sustain. Energy Rev., vol. 107, pp. 75–86, 2019, doi: https://doi.org/10.1016/j.rser.2019.02.021
  103. A. Elhanafi, A. Fleming, G. Macfarlane, Z. Leong, “Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column wave energy converter,” Renew. Energy, vol. 105, pp. 209–231, 2017, doi: https://doi.org/10.1016/j.renene.2016.12.039