Consideraciones del diseño de la cámara de resonancia de una columna de agua oscilante
Publicado 2024-09-30
Palabras clave
- ANSYS,
- diseño,
- simulación numérica,
- energía renovable,
- energía de las olas
Cómo citar
Derechos de autor 2024 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
Uno de los dispositivos más prometedores para aprovechar la energía de las olas es la columna de agua oscilante (OWC, por sus siglas en inglés). Desde su creación, se ha puesto de manifiesto que este dispositivo ha sido objeto de múltiples investigaciones centradas en mejorar su eficiencia hidrodinámica. Existen varios factores geométricos que intervienen en la eficiencia de la cámara de resonancia de agua. Entre estos parámetros destacan la longitud o anchura interna, el ángulo de inclinación de la pared frontal y la profundidad de inmersión, así como el diámetro de salida del aire. En este sentido, resulta crucial discernir la importancia de estos factores y sus interacciones en el proceso de captación de la energía contenida en el frente de onda para la posterior optimización del diseño de este tipo de estructuras. Para ello, la metodología de superficie de respuesta o los modelos subrogados se consideran una buena opción para estudiar la sensibilidad de estos factores sobre su efecto en la eficiencia de la cámara resonante. En este trabajo, se describe el proceso investigativo sobre las principales consideraciones para el diseño de una cámara de resonancia OWC bajo una amplia variedad de condiciones de oleaje.
Descargas
Referencias
- R. Abbasi, M. J. Ketabdari, “Enhancement of OWC Wells turbine efficiency and performance using riblets covered blades, a numerical study,” Energy Convers. Manag., vol. 254, no. December 2021, p. 115212, 2022, doi: https://doi.org/10.1016/j.enconman.2022.115212
- A. T. Kotb, M. A. Nawar, Y. A. Attai, M. H. Mohamed, “Performance optimization of a modified Wells turbine for wave energy conversion,” Ocean Eng., vol. 280, no. May, p. 114849, 2023, doi: https://doi.org/10.1016/j.oceaneng.2023.114849
- M. W. Power, “Flow Control in Wells Turbines for Harnessing Maximum Wave Power,” Sensors, vol. 18, no. 2, 2018, doi: https://doi.org/10.3390/s18020535
- R. Ahamed, K. McKee, I. Howard, “Advancements of wave energy converters based on power take off (PTO) systems: A review,” Ocean Eng., vol. 204, no. March, p. 107248, 2020, doi: https://doi.org/10.1016/j.oceaneng.2020.107248
- A. Çelik, A. Altunkaynak, “Experimental investigations on the performance of a fixed-oscillating water column type wave energy converter,” Energy, vol. 188, 2019, doi: https://doi.org/10.1016/j.energy.2019.116071
- T. Gómez-Navarro, D. Ribó-Pérez, “Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia,” Renew. Sustain. Energy Rev., vol. 90, no. September, 2016, pp. 131–141, 2018, doi: https://doi.org/10.1016/j.rser.2018.03.015
- O. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, M. Pourkashanian, “Renewable energy production and demand dataset for the energy system of Colombia,” Data Br., vol. 28, p. 105084, 2020, doi: https://doi.org/10.1016/j.dib.2019.105084
- A. Perez, J. J. Garcia-Rendon, “Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia,” Renew. Energy, vol. 167, pp. 146–161, 2021, doi: https://doi.org/10.1016/j.renene.2020.11.067
- A. María, A. M. Rosso-Cerón, and V. Kafarov, “Barriers to social acceptance of renewable energy systems in Colombia”, Current Opinion in Chemical Engineering, vol. 10. 2015, pp. 103–110. doi: https://doi.org/10.1016/j.coche.2015.08.003
- X. Wang, Y. Lu, C. Chen, X. Yi, H. Cui, “Total-factor energy efficiency of ten major global energy-consuming countries,” J. Environ. Sci., vol. 137, pp. 41–52, 2024, doi: https://doi.org/10.1016/j.jes.2023.02.031
- S. A. Gil Ruiz, J. E. C. Barriga, and J. A. Martínez, “Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data,” Renew. Energy, vol. 172, pp. 158–176, 2021, doi: https://doi.org/10.1016/j.renene.2021.03.033
- J. G. Rueda-Bayona, A. Guzmán, J. J. C. Eras, R. Silva-Casarín, E. Bastidas-Arteaga, J. Horrillo-Caraballo, “Renewables energies in Colombia and the opportunity for the offshore wind technology,” J. Clean. Prod., vol. 220, pp. 529–543, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.02.174
- UPME and Unidad de Planeación Minero Energética (UPME), “National Energy Plan 2020-2050,” Bogotá, 2019. [Online]. Available: https://www1.upme.gov.co/DemandaEnergetica/UPME_Presentacion_PEN_V48.pdf
- Ministerio de Minas y Energía de Colombia (MinMinas), “La transición energética de Colombia.” [Online]. Available: https://www.minenergia.gov.co/documents/5744/Memorias_al_Congreso_2019-2020.pdf
- D. Clemente, P. Rosa-Santos, and F. Taveira-Pinto, “On the potential synergies and applications of wave energy converters: A review,” Renew. Sustain. Energy Rev., vol. 135, 2020, p. 110162, 2021, doi: https://doi.org/10.1016/j.rser.2020.110162
- M. F. Ashby, Materials and Sustainable Development. Butterworth-Heinemann: Cambridge, 2024, doi: https://doi.org/10.1016/C2021-0-00557-5
- P. J. Mcnicholas, R. G. Floyd, L. E. Fennimore, S. A. Fitzpatrick, “Determining journal article citation classics in school psychology: An updated bibliometric analysis using Google Scholar, Scopus, and Web of Science,” J. Sch. Psychol., vol. 90, no. December 2021, pp. 94–113, 2022, doi: https://doi.org/10.1016/j.jsp.2021.11.001
- S. D. Meyers, L. Azevedo, M. E. Luther, “A Scopus-based bibliometric study of maritime research involving the Automatic Identification System,” Transp. Res. Interdiscip. Perspect., vol. 10, no. May, p. 100387, 2021, doi: https://doi.org/10.1016/j.trip.2021.100387
- T. Aderinto, H. Li, “Ocean Wave energy converters: Status and challenges,” Energies, vol. 11, no. 5, pp. 1–26, 2018, doi: https://doi.org/10.3390/en11051250
- A. Terrero et al., “Is wave energy untapped potential?,” Int. J. Mech. Sci., vol. 205, no. February, p. 106544, 2021, doi: https://doi.org/10.1016/j.ijmecsci.2021.106544
- M. Shadman, C. Silva, D. Faller, et. al, “Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil”, Energies, vol. 12, no. 19, 2019, doi: https://doi.org/10.3390/en12193658
- L. de Oliveira, I. F. S. dos Santos, N. L. Schmidt, G. L. Tiago Filho, R. G. R. Camacho, R. M. Barros, “Economic feasibility study of ocean wave electricity generation in Brazil,” Renew. Energy, vol. 178, pp. 1279–1290, 2021, doi: https://doi.org/10.1016/j.renene.2021.07.009
- F. He, Z. Huang, A. Wing-Keung Law, “Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers: an experimental study,” Ocean Eng., vol. 51, pp. 16–27, 2012, doi: https://doi.org/10.1016/j.oceaneng.2012.05.008
- A. Elhanafi, G. Macfarlane, A. Fleming, Z. Leong, “Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter,” Appl. Energy, vol. 205, no. July, pp. 369–390, 2017, doi: https://doi.org/10.1016/j.apenergy.2017.07.138
- A. Kamath, H. Bihs, Ø. A. Arntsen, “Numerical investigations of the hydrodynamics of an oscillating water column device,” Ocean Eng., vol. 102, pp. 40–50, 2015, doi: https://doi.org/10.1016/j.oceaneng.2015.04.043
- D. H. Yacob, S. Sarip, H. M. Kaidi, J. A. Ardila-Rey, F. Muhammad-Sukki, “Oscillating Water Column Geometrical Factors and System Performance: A Review,” IEEE Access, vol. 10, pp. 32104–32122, 2022, doi: https://doi.org/10.1109/access.2022.3160713
- S. Foteinis, “Wave energy converters in low energy seas: Current state and opportunities,” Renew. Sustain. Energy Rev., vol. 162, 2021, p. 112448, 2022, doi: https://doi.org/10.1016/j.rser.2022.112448
- B. Guo, J. V. Ringwood, “Geometric optimisation of wave energy conversion devices: A survey,” Appl. Energy, vol. 297, p. 117100, 2021, doi: https://doi.org/10.1016/j.apenergy.2021.117100
- S. S. Prakash et al., “Wave Energy Converter: A Review of Wave Energy Conversion Technology,” in 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), IEEE, pp. 71–77, 2016, doi: https://doi.org/10.1109/APWC-on-CSE.2016.023
- L. Rusu, F. Onea, “The performance of some state of the art wave energy converters in locations with the worldwide highest wave power,” Renew. Sustain. Energy Rev., no. August 2015, pp. 0–1, 2016, doi: https://doi.org/10.1016/j.rser.2016.11.123
- J. D. Restrepo and S. A. López, “Morphodynamics of the Pacific and Caribbean deltas of Colombia, South America,” J. South Am. Earth Sci., vol. 25, no. 1, pp. 1–21, 2008, doi: https://doi.org/10.1016/j.jsames.2007.09.002
- J. Portilla, A. L. Caicedo, R. Padilla-Hernández, L. Cavaleri, “Spectral wave conditions in the Colombian Pacific Ocean,” Ocean Model., vol. 92, pp. 149–168, 2015, doi: https://doi.org/10.1016/j.ocemod.2015.06.005
- A. F. Osorio, S. Ortega, S. Arango-Aramburo, “Assessment of the marine power potential in Colombia,” Renew. Sustain. Energy Rev., vol. 53, pp. 966–977, 2016, doi: https://doi.org/10.1016/j.rser.2015.09.057
- A. F. Osorio, R. D. Montoya, J. C. Ortiz, D. Peláez, “Construction of synthetic ocean wave series along the Colombian Caribbean Coast: A wave climate analysis,” Appl. Ocean Res., vol. 56, pp. 119–131, 2016, doi: https://doi.org/10.1016/j.apor.2016.01.004
- C. M. Appendini, A. Torres-Freyermuth, P. Salles, J. López-González, E. T. Mendoza, “Wave climate and trends for the Gulf of Mexico: A 30-yr wave hindcast,” J. Clim., vol. 27, no. 4, pp. 1619–1632, 2014, doi: https://doi.org/10.1175/JCLI-D-13-00206.1
- C. Wang, “Variability of the Caribbean Low-Level Jet and its relations to climate,” Clim. Dyn., vol. 29, no. 4, pp. 411–422, 2007, doi: https://doi.org/10.1007/s00382-007-0243-z
- I. Simonetti, L. Cappietti, H. Elsafti, H. Oumeraci, “Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study,” Energy, vol. 139, pp. 1197–1209, 2017, doi: https://doi.org/10.1016/j.energy.2017.08.033
- A. Falcão, J. C. C. Henriques, “Oscillating water column wave energy converters and air turbines: A review,” Renew. Energy, vol. 85, pp. 1391–1424, 2016, doi: https://doi.org/10.1016/j.renene.2015.07.086
- I. López, B. Pereiras, F. Castro, G. Iglesias, “Performance of OWC wave energy converters: influence of turbine damping and tidal variability,” Energy Res., no. August 2014, pp. 472–483, 2015, doi: https://doi.org/10.1002/er.3239
- D. Z. Ning, R. Q. Wang, Q. P. Zou, B. Teng, “An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter,” Appl. Energy, vol. 168, pp. 636–648, 2016, doi: https://doi.org/10.1016/j.apenergy.2016.01.107
- T. Vyzikas, S. Deshoulières, M. Barton, O. Giroux, D. Greaves, D. Simmonds, “Experimental investigation of different geometries of fixed OWC devices,” Renew. Energy, vol. 104, pp. 248–258, 2017, doi: https://doi.org/10.1016/j.renene.2016.11.061
- S. Shareen Abbasi, T. Hee Min, S. H. Shafiai, S. Yi Theng, L. Chai Heng, “Design Enhancement of an Oscillating Water Column for Harnessing of Wave Energy,” ARPN Journal of Engineering and Applied Sciences, vol. 12, no. 16, pp. 4791–4795, 2017.
- J. S. Kim, B. W. Nam, K.-H. Kim, S. Park, S. H. Shin, K. Hong, “A numerical study on hydrodynamic performance of an inclined OWC wave energy converter with nonlinear turbine-chamber interaction based on 3D potential flow,” J. Mar. Sci. Eng., vol. 8, no. 3, 2020, doi: https://doi.org/10.3390/jmse8030176
- F. Mahnamfar, A. Altunkaynak, “Comparison of numerical and experimental analyses for optimizing the geometry of OWC systems,” Ocean Eng., vol. 130, pp. 10–24, 2017, doi: https://doi.org/10.1016/j.oceaneng.2016.11.054
- B. Bouali, S. Larbi, “Contribution to the Geometry Optimization of an Oscillating Water Column Wave Energy Converter,” Energy Procedia, vol. 36, pp. 565–573, 2013, doi: https://doi.org/10.1016/j.egypro.2013.07.065
- D. Howe, J. Nader, “OWC WEC Integrated within a Breakwater versus Isolated: Experimental and Numerical Theoretical Study,” Int. J. Mar. Energy, 2017, doi: https://doi.org/10.1016/j.ijome.2017.07.008
- A. Elhanafi, G. Macfarlane, A. Fleming, Z. Leong, “Experimental and numerical investigations on the intact and damage survivability of a floating moored oscillating water column device,” Appl. Ocean Res., vol. 68, pp. 276–292, 2017, doi: https://doi.org/10.1016/j.apor.2017.09.007
- M. das N. Gomez, G. Lorenzini, L. A. O. Rocha, E. D. dos Santos, L. A. Isoldi, “Constructal Design Applied to the Geometric Evaluation of an Oscillating Water Column Wave Energy Converter Considering Different Real Scale Wave Periods,” J. Eng. Thermophys., vol. 27, no. 2, pp. 173–190, 2018, doi: https://doi.org/10.1134/S1810232818020042
- M. Letzow, Lorenzini, “Numerical analysis of the influence of geometry on a large scale onshore oscillating water column device with associated seabed ramp,” Int. J. Des. Nat. Ecodynamics, vol. 15, no. 6, pp. 873–884, 2020, doi: https://doi.org/10.18280/ijdne.150613
- P. Boccotti, “Comparison between a U-OWC and a conventional OWC,” Ocean Eng., vol. 34, no. 5–6, pp. 799–805, 2007, doi: https://doi.org/10.1016/j.oceaneng.2006.04.005
- P. D. Spanos, F. Maria, G. Malara, F. Arena, “An approach for non-linear stochastic analysis of U-shaped OWC wave energy converters,” Probabilistic Eng. Mech., vol. 54, no. June 2017, pp. 44–52, 2018, doi: https://doi.org/10.1016/j.probengmech.2017.07.001
- D. Ning et al., “Geometrical investigation of a U-shaped oscillating water column wave energy device,” Appl. Ocean Res., vol. 97, no. January, p. 102105, 2020, doi: https://doi.org/10.1016/j.apor.2020.102105
- L. Gurnari, P. G. Filianoti, S. M. Camporeale, “Fluid dynamics inside a U-shaped oscillating water column (OWC): 1D vs 2D CFD model,” Renew. Energy, vol. 193, pp. 687–705, Jun. 2022, doi: https://doi.org/10.1016/j.renene.2022.05.025
- N. Fonseca, J. Pessoa, “Numerical modeling of a wave energy converter based on U-shaped interior oscillating water column,” Applied Ocean Research, vol. 40, pp. 60–73, 2013, doi: https://doi.org/10.1016/j.apor.2013.01.002
- G. Moretti, G. Malara, A. Scialò, L. Daniele, A. Romolo, R. Vertechy, M. Fontana, “Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator,” Renewable Energy, vol. 146, pp. 628–642, 2020, doi: https://doi.org/10.1016/j.renene.2019.06.077
- L. A. Gaspar, P. R. Teixeira, E. Didier, “Numerical analysis of the performance of two onshore oscillating water column wave energy converters at different chamber wall slopes,” Ocean Eng., vol. 201, no. June 2019, p. 107119, 2020, doi: https://doi.org/10.1016/j.oceaneng.2020.107119
- M. Kharati-Koopaee, A. Fathi-Kelestani, “Assessment of oscillating water column performance: influence of wave steepness at various chamber lengths and bottom slopes,” Renew. Energy, vol. 147, pp. 1595–1608, 2020, doi: https://doi.org/10.1016/j.renene.2019.09.110
- B. Bouali, S. Larbi, “Sequential optimization and performance prediction of an oscillating water column wave energy converter,” Ocean Eng., vol. 131, no. January, pp. 162–173, 2017, doi: https://doi.org/10.1016/j.oceaneng.2017.01.004
- M. Hayati, A. H. Nikseresht, A. T. Haghighi, “Sequential optimization of the geometrical parameters of an OWC device based on the specific wave characteristics,” Renew. Energy, vol. 161, pp. 386–394, 2020, doi: https://doi.org/10.1016/j.renene.2020.07.073
- A. A. M. Rodríguez, J. M. B. Ilzarbe, R. S. Casarín, U. I. Ereño, “The influence of the chamber configuration on the hydrodynamic efficiency of oscillating water column devices,” J. Mar. Sci. Eng., vol. 8, no. 10, pp. 1–27, 2020, doi: https://doi.org/10.3390/jmse8100751
- M. Shahabi-Nejad, A. H. Nikseresht, “A comprehensive investigation of a hybrid wave energy converter including oscillating water column and horizontal floating cylinder,” Energy, vol. 243, p. 122763, 2022, doi: https://doi.org/10.1016/j.energy.2021.122763
- Z. Deng, C. Wang, P. Wang, P. Higuera, R. Wang, “Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study,” Energy, vol. 187, p. 115941, 2019, doi: https://doi.org/10.1016/j.energy.2019.115941
- C. Wang and Y. Zhang, “Hydrodynamic performance of an offshore OWC mounted over an immersed horizontal plate : A numerical study,” Energy, vol. 222, p. 119964, 2021, doi: https://doi.org/10.1016/j.energy.2021.119964
- M. Rashed, M. Zhao, H. Wu, A. Munir, “Numerical investigation of offshore oscillating water column devices,” Renew. Energy, vol. 191, pp. 380–393, 2022, doi: https://doi.org/10.1016/j.renene.2022.04.069
- D. Gallutia, M. Tahmasbi, M. Gutierrez, J. He, “Recent advances in wave energy conversion systems: From wave theory to devices and control strategies,” Ocean Eng., vol. 252, no. March, p. 111105, 2022, doi: https://doi.org/10.1016/j.oceaneng.2022.111105
- E. J. Ransley, D. Greaves, A. Raby, D. Simmonds, M. Hann, “Survivability of wave energy converters using CFD,” Renew. Energy, vol. 109, pp. 235–247, 2017, doi: https://doi.org/10.1016/j.renene.2017.03.003
- Y. Zhang, X. Zhao, J. Geng, L. Tao, “A novel concept for reducing wave reflection from OWC structures with application of harbor agitation mitigation / coastal protection: theoretical investigations,” Ocean Eng., vol. 242, no. November, p. 110075, 2021, doi: https://doi.org/10.1016/j.oceaneng.2021.110075
- C. Tsai, C. Ko, Y. Chen, “Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter,” Sustainability, pp. 1–20, 2018, doi: https://doi.org/10.3390/su10030643
- A. Çelik, “An experimental investigation into the effects of front wall geometry on OWC performance for various levels of applied power take off dampings,” Ocean Eng., vol. 248, no. February, p. 110761, 2022, doi: https://doi.org/10.1016/j.oceaneng.2022.110761
- J. Zhan, Q. Fan, W. Hu, Y. Gong, “Hybrid realizable k-ε/laminar method in the application of 3D heaving OWCs,” Renew. Energy, vol. 155, pp. 691–702, 2020, doi: https://doi.org/10.1016/j.renene.2020.03.140
- S. J. Ashlin, V. Sundar, and S. A. Sannasiraj, “Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics,” Renew. Energy, vol. 96, pp. 341–353, 2016, doi: https://doi.org/10.1016/j.renene.2016.04.091
- K. Rezanejad, J. Bhattacharjee, C. G. Soares, “Stepped sea bottom effects on the efficiency of nearshore oscillating water column device,” Ocean Eng., vol. 70, pp. 25–38, 2013, doi: https://doi.org/10.1016/j.oceaneng.2013.05.029
- A. Elhanafi, G. Macfarlane, D. Ning, “Hydrodynamic performance of single chamber and dual chamber offshore stationary Oscillating Water Column devices using CFD,” Appl. Energy, vol. 228, no. June, pp. 82–96, 2018, doi: https://doi.org/10.1016/j.apenergy.2018.06.069
- A. T. Haghighi, A. H. Nikseresht, M. Hayati, “Numerical analysis of hydrodynamic performance of a dual-chamber Oscillating Water Column,” Energy, vol. 221, p. 119892, 2021, doi: https://doi.org/10.1016/j.energy.2021.119892
- A. Elhanafi, G. Macfarlane, A. Fleming, Z. Leong, “Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter,” Appl. Energy, vol. 189, pp. 1–20, 2017, doi: https://doi.org/10.1016/j.apenergy.2016.11.095
- K. Monk, V. Winands, M. Lopes, “Chamber pressure skewness corrections using a passive relief valve system at the Pico oscillating water column wave energy plant,” Renew. Energy, 2018, doi: https://doi.org/10.1016/j.renene.2018.04.037
- I. Simonetti, L. Cappietti, H. Elsafti, H. Oumeraci, “Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling,” Renew. Energy, 2017, doi: https://doi.org/10.1016/j.renene.2017.12.027
- A. A. Medina Rodríguez, R. Silva Casarín, J. M. Blanco Ilzarbe, “The influence of oblique waves on the hydrodynamic efficiency of an onshore OWC wave energy converter,” Renew. Energy, vol. 183, pp. 687–707, 2022, doi: https://doi.org/10.1016/j.renene.2021.11.061
- J.C. Martins, M.M. Goulart, M. das N. Gomes, J.A. Souza, L.A.O. Rocha, L.A. Isoldi, “Geometric evaluation of the main operational principle of an overtopping wave energy converter by means of Constructal Design,” Renew. Energy, vol. 118, pp. 727–741, 2018, doi: https://doi.org/10.1016/j.renene.2017.11.061
- N. Gomes et al., “Analysis of the Geometric Constraints Employed in Constructal Design for Oscillating Water Column Devices Submitted to the Wave Spectrum Through a Numerical Approach,” Defect Diffus. Forum, vol. 390, pp. 193–210, 2019, doi: https://doi.org/10.4028/www.scientific.net/DDF.390.193
- Y. Theodoro et al., “Geometric Analysis through the Constructal Design of a Sea Wave Energy Converter with Several Coupled Hydropneumatic Chambers Considering the Oscillating Water Column Operating Principle,” Appl. Sci., vol. 11, no. 18, 2021, doi: https://doi.org/10.3390/app11188630
- Y. Lima, M. Gomes, C. Cardozo, L. Isoldi, E. Santos, L. Rocha, “Analysis of geometric variation of three degrees of freedom through the constructal design method for a Oscillating Water Column device with Double hidropneumatic chamber,” Defect Diffus. Forum, vol. 396, pp. 22–31, 2019, doi: https://doi.org/10.4028/www.scientific.net/DDF.396.22
- W. Zhang, Z. Huang, M. Kang, M. Shi, R. Deng, “Research on multivariate nonlinear regression model of specific energy of rock with laser drilling based on response surface methodology,” Opt. Commun., vol. 489, no. January, p. 126865, 2021, doi: https://doi.org/10.1016/j.optcom.2021.126865
- J. Betancour, L. Vel, E. Chica, “Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology,” Renewable Energy, vol. 172, 2021, doi: https://doi.org/10.1016/j.renene.2021.03.076
- M. Almeida, S. Luis, C. Ferreira, C. Galvão, A. Maria, G. Souza, “Simultaneous optimization of multiple responses and its application in Analytical Chemistry - A review,” Talanta, vol. 194, pp. 941–959, 2019, doi: https://doi.org/10.1016/j.talanta.2018.10.088
- P. Matias-Guiu, J. Rodríguez-Bencomo, J. Pérez-Correa, F. López, “Aroma profile design of wine spirits: Multi-objective optimization using response surface methodology,” Food Chem., vol. 245, pp. 1087–1097, 2018, doi: https://doi.org/10.1016/j.foodchem.2017.11.062
- N. Prajapati, P. Kodgire, S. Singh, “Materials today: Proceedings comparison of RSM Based FFD and CCD methods forniodiesel production using microwave technique,” Materials Today Proceedings, vol. 62, pp. 6985–6991, 2022, doi: https://doi.org/10.1016/j.matpr.2021.12.379
- C. Muthukumar, E. Iype, K. Raju, S. Pulletikurthi, “Sunlight assisted photocatalytic degradation using the RSM-CCD optimized sustainable photocatalyst synthesized from galvanic wastewater,” J. Mol. Struct., vol. 1263, p. 133194, 2022, doi: https://doi.org/10.1016/j.molstruc.2022.133194
- Y. Cui, Z. Liu, X. Zhang, C. Xu, “Review of CFD studies on axial-flow self-rectifying turbines for OWC wave energy conversion,” Ocean Eng., vol. 175, no. December 2018, pp. 80–102, 2019, doi: https://doi.org/10.1016/j.oceaneng.2019.01.040
- J. Falnes, Ocean Waves And Oscillating Systems. Cambridge University Press, 2005.
- K. Trivedi, A. R. Ray, P. A. Krishnan, S. Koley, and T. Sahoo, “Hydrodynamics of an OWC Device in Irregular Incident Waves Using RANS Model,” Fluids, vol. 8, no. 1, pp. 1–31, 2023, doi: https://doi.org/10.3390/fluids8010027
- M. H. Dao, L. W. Chew, Y. Zhang, “Modelling physical wave tank with flap paddle and porous beach in OpenFOAM,” Ocean Eng., vol. 154, no. March 2017, pp. 204–215, 2018, doi: https://doi.org/10.1016/j.oceaneng.2018.02.024
- F. Opoku, M. N. Uddin, M. Atkinson, “A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach,” Renew. Sustain. Energy Rev., vol. 174, p. 113124, 2023, doi: https://doi.org/10.1016/j.rser.2022.113124
- Ley 1715 de 2014, “Por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional,” Congreso de la República de Colombia. [Online]. Available: http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html
- Ley 2099 de 2021, “Por medio de la cual se dictan disposiciones para la transición energética, la dinamización del mercado energético, la reactivación económica del país y se dictan otras disposiciones,” Congreso de la República de Colombia. [Online]. Available: http://www.secretariasenado.gov.co/senado/basedoc/ley_2099_2021.html
- F. R. Menco, A. Rubio-Clemente, E. Chica, “Design of a wave energy converter system for the Colombian Pacific Ocean,” Rev. Fac. Ing., no. 94, pp. 8–23, 2020, doi: https://doi.org/10.17533/udea.redin.20190406
- D. D. Prasad, M. R. Ahmed, Y. H. Lee, R. N. Sharma, “Validation of a piston type wave-maker using Numerical Wave Tank,” Ocean Eng., vol. 131, no. November 2014, pp. 57–67, 2017, doi: https://doi.org/10.1016/j.oceaneng.2016.12.031
- I. López, J. Andreu, S. Ceballos, I. Martínez De Alegría, I. Kortabarria, “Review of wave energy technologies and the necessary power-equipment,” Renew. Sustain. Energy Rev., vol. 27, pp. 413–434, 2013, doi: https://doi.org/10.1016/j.rser.2013.07.009
- V. Heath, “A review of oscillating water columns,” R. Soc., pp. 235–245, 2012, doi: https://doi.org/10.1098/rsta.2011.0164
- A. Falcão, “Wave energy utilization: a review of the technologies,” Renew. Sustain. Energy Rev., vol. 14, no. 3, pp. 899–918, 2010, doi: https://doi.org/10.1016/j.rser.2009.11.003
- F. Arena, A. Romolo, G. Malara, V. Fiamma, V. Laface, “The first full operative U-OWC plants in the port of Civitavecchia,” Proc. Int. Conf. Offshore Mech. Arct. Eng. - OMAE, vol. 10, pp. 1–11, 2017, doi: https://doi.org/10.1115/OMAE2017-62036
- S. Doyle, G. A. Aggidis, “Development of multi-oscillating water columns as wave energy converters,” Renew. Sustain. Energy Rev., vol. 107, pp. 75–86, 2019, doi: https://doi.org/10.1016/j.rser.2019.02.021
- A. Elhanafi, A. Fleming, G. Macfarlane, Z. Leong, “Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column wave energy converter,” Renew. Energy, vol. 105, pp. 209–231, 2017, doi: https://doi.org/10.1016/j.renene.2016.12.039