Vol. 20 Núm. 2 (2021): Revista UIS Ingenierías
Artículos

Cavitación en perfiles hidrodinámicos para turbinas hidrocinéticas

Ana Sofía Barona-Mejía
Universidad de Antioquia
Sara Gómez-Díaz
Universidad de Antioquia
Jonathan Aguilar-Bedoya
Universidad de Antioquia
Ainhoa Rubio-Clemente
Tecnológico de Antioquia Institución Universitaria TdeA
Edwin Lenin Chica-Arrieta
Universidad de Antioquia

Publicado 2021-01-02

Palabras clave

  • cavitación,
  • número de cavitación,
  • inicio de la cavitación,
  • turbina hidrocinética,
  • perfil hidrodinámico,
  • coeficiente de presión,
  • CFD,
  • Eppler 420,
  • modelo de turbulencia k-ω SST,
  • coeficiente de sustentación
  • ...Más
    Menos

Cómo citar

Barona-Mejía, A. S., Gómez-Díaz, S., Aguilar-Bedoya, J., Rubio-Clemente, A., & Chica-Arrieta, E. L. (2021). Cavitación en perfiles hidrodinámicos para turbinas hidrocinéticas. Revista UIS Ingenierías, 20(2), 85–96. https://doi.org/10.18273/revuin.v20n2-2021008

Resumen

La resistencia a la cavitación es un requerimiento importante en el diseño de turbinas hidrocinéticas para aplicaciones marinas o fluviales dado que se ha demostrado que la cavitación puede contribuir al desgaste, corrosión, vibración y fatiga de los álabes de la turbina. La presencia de cavitación en los álabes puede conducir a la disminución del rendimiento de la turbina y la reducción de su vida útil. Por lo tanto, es fundamental incluir un estudio de cavitación en el análisis y desarrollo de los sistemas hidrocinéticos. En este trabajo, se presentan los elementos a tener en cuenta en un estudio de cavitación de los álabes de las turbinas hidrocinéticas. Como criterio para determinar la ocurrencia de cavitación, se presentó la comparación entre la distribución del coeficiente de presión ( ) sobre el perfil hidrodinámico Eppler 420 y el número de cavitación ( ). El  fue calculado mediante simulación numérica usando el software Ansys Fluent. Los resultados mostraron que el perfil hidrodinámico Eppler 420 podría ser empleado para el diseño de los álabes de turbinas hidrocinéticas.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] O. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, M. Pourkashanian, “Renewable energy production and demand dataset for the energy system of Colombia”, Data in Brief, vol. 28, 105084, 2020, doi: 10.1016/j.dib.2019.105084

[2] O. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, M. Pourkashanian, “Large scale integration of renewable energy sources (RES) in the future Colombian energy system”, Energy, vol. 186, 115805, 2019, doi: 10.1016/j.energy.2019.07.135

[3] J. G. Rueda-Bayona, A. Guzmán, J. J. C. Eras, R. Silva-Casarín, E. Bastidas-Arteaga, J. Horrillo-Caraballo, “Renewables energies in Colombia and the opportunity for the offshore wind technology”, Journal of Cleaner Production, vol. 220, pp. 529-543, 2019.

[4] T. Gómez-Navarro, D. Ribó-Pérez, “Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia”, Renewable and Sustainable Energy Reviews, vol. 90, pp. 131-141, 2018, doi: 10.1016/j.rser.2018.03.015

[5] F. Henao, I. Dyner, “Renewables in the optimal expansion of colombian power considering the Hidroituango crisis”, Renewable Energy, vol. 158, pp. 612-627, 2020, doi: 10.1016/j.renene.2020.05.055

[6] D. Rodríguez-Urrego, L. Rodríguez-Urrego, “Photovoltaic energy in Colombia: current status, inventory, policies and future prospects”, Renewable and Sustainable Energy Reviews, vol. 92, pp. 160-170, 2018, doi: 10.1016/j.rser.2018.04.065

[7] R. D. M. Ramírez, F. I. Cuervo, C. A. M. Rico, “Technical and financial valuation of hydrokinetic power in the discharge channels of large hydropower plants in Colombia: A case study”, Renewable Energy, vol. 99, pp. 136-147, 2016, doi: 10.1016/j.renene.2016.06.047

[8] M. I. Yuce, A. Muratoglu, “Hydrokinetic energy conversion systems: A technology status review”, Renewable and Sustainable Energy Reviews, vol. 43, pp. 72-82, 2015, doi: 10.1016/j.rser.2014.10.037

[9] K. Kusakana, “Energy management of a grid-connected hydrokinetic system under Time of Use tariff”, Renewable Energy, vol. 101, pp. 1325-1333, 2017.

[10] M. R. Motley, R. B. Barber, "Passive control of marine hydrokinetic turbine blades”, Composite Structures, vol. 110, pp. 133-139, 2014, doi: 10.1016/j.compstruct.2013.11.026

[11] R. C. Adhikari, J. Vaz, D. Wood, “Cavitation inception in crossflow hydro turbines”, Energies, vol. 9, no. 4, pp. 237, 2016, doi: 10.3390/en9040237

[12] P. A. S. F. da Silva, L. D. Shinomiya, T. F. de Oliveira, J. R. P. Vaz, A. L. A. Mesquita, A. C. P. B. Junior, “Design of hydrokinetic turbine blades considering cavitation”, en The 7th International Conference on Applied Energy–ICAE2015, Energy Procedia, vol. 75, pp. 277-282, 2015.

[13] P. Kumar, R. P. Saini, “Study of cavitation in hydro turbines-A review”, Renewable and Sustainable Energy Reviews, vol. 14, n. 1, pp. 374-383, 2010, doi: 10.1016/j.rser.2009.07.024

[14] A. F. Molland, A. S. Bahaj, J. R. Chaplin, W. M. J. Batten, “Measurements and predictions of forces, pressures and cavitation on 2-D sections suitable for marine current turbines”, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, vol. 218, no. 2, pp. 127-138, 2004, doi: 10.1243/1475090041651412

[15] L. Soulat, A. F. Pouangue, S. Moreau, “A high-order sensitivity method for multi-element high-lift device optimization”, Computers & Fluids, vol. 124, pp. 105-116, 2016, doi: 10.1016/j.compfluid.2015.10.013

[16] A. S. Bahaj, A. F. Molland, J. R. Chaplin, W. M. J. Batten, “Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank”, Renewable Energy, vol. 32, no. 3, pp. 407-426, 2007, doi: 10.1016/j.renene.2006.01.012

[17] Q. Guo, L. J. Zhou, Z. W. Wang, “Numerical simulation of cavitation for a horizontal axis marine current turbine”, en IOP Conference Series: Materials Science and Engineering, vol. 72, no. 4, pp. 042045, 2015, doi: 10.1088/1757-899X/72/4/042045

[18] W. M. J. Batten, A. S. Bahaj, A. F. Molland, J. R. Chaplin, “The prediction of the hydrodynamic performance of marine current turbines”, Renewable Energy, vol. 33, no. 5, pp. 1085-1096, 2008, doi: 10.1016/j.renene.2007.05.043

[19] J. N. Goundar, M. R. Ahmed, Y. H. Lee, “Numerical and experimental studies on hydrofoils for marine current turbines”, Renewable Energy, vol. 42, pp. 173-179, 2012, doi: 10.1016/j.renene.2011.07.048

[20] W. C. Schleicher, J. D. Riglin, Z. A. Kraybill, A. Oztekin, R. C. Klein Jr, “Design and simulation of a micro hydrokinetic turbine”, en Proceedings of the 1st Marine Energy Technology Symposium, METS13, Washington, USA, 2013, pp. 1-8.

[21] S. Nigam, S. Bansal, T. Nema, V. Sharma, R. K. Singh, “Design and Pitch Angle Optimisation of Horizontal Axis Hydrokinetic Turbine with Constant Tip Speed Ratio”, en MATEC Web of Conferences 95, 2017, pp. 06004, doi: 10.1051/matecconf/20179506004

[22] P. A. S. F. Silva, L. D. Shinomiya, T. F. de Oliveira, J. R. P. Vaz, A. L. A. Mesquita, A. C. P. B. Junior, “Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM”, Applied Energy, vol. 185, pp. 1281-1291, 2017.

[23] A. Muratoglu, M. I. Yuce, “Performance Analysis of Hydrokinetic Turbine Blade Sections”, Journal ISSN, vol. 2, pp. 1-10, 2015.

[24] D. A. do Rio Vaz, J. R. Vaz, P. A. Silva, “An approach for the optimization of diffuser-augmented hydrokinetic blades free of cavitation”, Energy for Sustainable Development, vol. 45, pp. 142-149, 2018, doi: 10.1016/j.esd.2018.06.002

[25] J. R. Vaz, D. H. Wood, “Aerodynamic optimization of the blades of diffuser-augmented wind turbines”, Energy Conversion and Management, vol. 123, pp. 35-45, 2016, doi: 10.1016/j.enconman.2016.06.015

[26] H. Glauert, W. Durand, “Aerodynamic theory”, en Chapter XI. Division l. Airplanes propellers, New York: Dover, 1963, pp. 191-195.

[27] A. F. P. Ribeiro, A. M. Awruch, H. M. Gomes, “An airfoil optimization technique for wind turbines, Applied Mathematical Modelling”, vol. 36, no. 10, pp. 4898-4907, 2012, doi: 10.1016/j.apm.2011.12.026

[28] W. C. Schleicher, J. D. Riglin, A. Oztekin, “Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design”, Renewable Energy, vol. 76, pp. 234-241, 2015, doi: 10.1016/j.renene.2014.11.032

[29] P. A. Silva, T. F. Oliveira, A. C. Brasil Junior, J. R. Vaz, J.R., “Numerical Study of Wake Characteristics in a Horizontal-Axis Hydrokinetic Turbine”, Anais da Academia Brasileira de Ciências, vol. 88, no. 4, pp. 2441-2456, 2016, doi: 10.1590/0001-3765201620150652

[30] J. M. R. Gorle, L. Chatellier, F. Pons, M. Ba, “Flow and performance analysis of H-Darrieus hydroturbine in a confined flow: A computational and experimental study”, Journal of Fluids and Structures, vol. 66, pp. 382-402, 2016, doi: 10.1016/j.jfluidstructs.2016.08.003

[31] X. Wang, B. Song, P. Wang, C. Sun, “Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization”, International Journal of Naval Architecture and Ocean Engineering, vol. 10, no. 6, pp. 730-740, 2018, doi: 10.1016/j.ijnaoe.2017.12.005

[32] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA journal, vol. 32, no. 8, pp. 1598-1605, 1994, doi: 10.2514/3.12149

[33] J. Morgado, R. Vizinho, M. A. R. Silvestre, J. C. Páscoa, “XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils”, Aerospace Science and Technology, vol. 52, pp. 207-214, 2016, doi: 10.1016/j.ast.2016.02.031

[34] W. Tian, Z. Mao, H. Ding, “Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine”, International Journal of Naval Architecture and Ocean Engineering, vol. 10, no. 6, pp. 782-793, 2018, doi: 10.1016/j.ijnaoe.2017.10.006

[35] A. Abutunis, R. Hussein, K. Chandrashekhara, “A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application”, Renewable Energy, vol. 136, pp. 1281-1293, 2019, doi: 10.1016/j.renene.2018.09.105

[36] E. Chica, J. Aguilar, A. Rubio-Clemente, “Analysis of a lift augmented hydrofoil for hydrokinetic turbines”, Renewable Energy and Power Quality Journal, vol.17, pp. 49-55, 2019.

[37] E. Chica, J. A. Bedoya, y A. Rubio-Clemente, “Investigación numérica sobre el uso de álabes multielemento en turbina hidrocinética de eje horizontal”, Revista UIS Ingenierías, vol. 18, no. 3, 117-128, 2019.

[38] P. J. Roache, “Quantification of uncertainty in computational fluid dynamics”, Annual review of fluid Mechanics, vol. 29, no. 1, 123-160, 1997, doi: 10.1146/annurev.fluid.29.1.123

[39] A. P. Prakoso, A. I. Siswantara, D. Adanta, “Comparison between 6-DOF UDF and moving mesh approaches in CFD methods for predicting cross-flow pico-hydro turbine performance”, CFD Letters, vol. 11, no. 6, 86-96, 2019.

[40] P. J. Roache, “ Perspective: a method for uniform reporting of grid refinement studies”. Journal of Fluids Engineering, vol. 116, pp. 405-413, 1994, doi: 10.1115/1.2910291