Uso del biocarbón como material alternativo para el tratamiento de aguas residuales contaminadas

Resumen

El biocarbón es el producto procedente de la descomposición de biomasa, cuyas características fisicoquímicas están asociadas al origen de ésta y al método de combustión utilizado. Entre estas propiedades, destacan el área superficial, la formación de macro y microporos, y la presencia de grupos funcionales. Debido a estas características, el biocarbón se convierte en un material alternativo con alta capacidad de adsorción de compuestos tóxicos presentes en las aguas residuales contaminadas. Este trabajo brinda información sobre los mecanismos de generación del biocarbón y cómo éstos interfieren en sus características fisicoquímicas. Asimismo, se describen los parámetros que intervienen en los procesos de remoción de contaminantes y se mencionan los tratamientos bajo los cuales el biocarbón se puede ver sometido para mejorar su capacidad de adsorción. Finalmente, se indican los posibles usos o la adecuada disposición final que debe tener el biocarbón en aras de contribuir a la estrategia de economía circular. 

Palabras clave: adsorción, agua residual, área superficial, biocarbón, combustión de la biomasa, contaminante persistente, desorción, economía circular, grupo funcional, materia prima, pH, porosidad, remoción, temperatura

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] Instituto Español de Esdudios Estratégicos, Cuadernos de Estrategia 186 El agua: ¿fuente de conflicto o cooperación?. España: Ministerio de Defensa, 2017.

[2] M. Espigares García, J. A. Pérez López, “Aguas residuales: El recurso desaprovechado”, Universidad de Granada. Servicio de publicaciones, España, 1990.

[3] R. J. Preston, J. A. Skare, M. J. Aardema, “A review of biomonitoring studies measuring genotoxicity in humans exposed to hair dyes”, Mutagenesis, vol. 25, no. 1, pp. 17-23, 2010, doi: 10.1093/mutage/gep044

[4] J. E. Klaunig, L. M. Kamendulis, B. A. Hocevar, “Oxidative stress and oxidative damage in carcinogenesis”, Toxicologic Pathology, vol. 38, no. 1, pp. 96-109, 2010, doi: 10.1177/0192623309356453

[5] R. Javaid, U. Y. Qazi, “Catalytic oxidation process for the degradation of synthetic dyes: An overview”, International Journal of Environmental Research and Public Health, vol. 16, no. 11, pp. 1-27, 2019, doi: 10.3390/ijerph16112066

[6] E. Pagalan, M. Sebron, S. Gomez, S. J. Salva, R. Ampusta, A. J. Macarayo, C. Joyno, A. Ido, R. Arazo, “Activated carbon from spent coffee grounds as an adsorbent for treatment of water contaminated by aniline yellow dye”, Industrial Crops and Products, vol. 145, no. June 2019, pp. 111953, 2020, doi: 10.1016/j.indcrop.2019.111953

[7] M. E. De la peña, J. Ducci, V. Zamora, “Tratamiento de aguas residuales en México”, Banco interamericano de desarrollo, México, Nota técnica IDB-TN-521, 2013.

[8] E. C. Valdez y A. B. Vásquez, “Ingeniería de los sistemas de tratamiento y disposicion de aguas residuales”, México: Fundación ICA, 2003.

[9] Y. Anjaneyulu, N. Sreedhara Chary, D. S. Suman Raj, “Decolourization of industrial effluents - Available methods and emerging technologies - A review”, Reviews in Environmental Science and Biotechnology, vol. 4, no. 4, pp. 245-273, 2005.

[10] A. Cortazar Martínez, C. A. González Ramírez, C. Coronel Olivares, J. A. Escalante Lozada, J. Castro Rosas, J. R. Villa, “Biotecnología aplicada a la degradación de colorantes de la industria textil. Biotechnology applied to the degradation of textile industry dyes”, Universidad y Ciencia, vol. 28, no. 2, pp. 187-199, 2012.

[11] L. F. Barrios-Ziolo, L. F. Gaviria-Restrepo, E. A. Agudelo, S. A. Cardona-Gallo, “Technologies for the removal of dyes and pigments present in wastewater. A review”, DYNA (Colombia), vol. 82, no. 191, pp. 118-126, 2015, doi: 10.15446/dyna.v82n191.42924

[12] M. Choudhary, R. Kumar, S. Neogi, “Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water”, Journal of Hazardous Materials, vol. 392, pp. 12244-12249, 2020, doi: 10.1016/j.jhazmat.2020.122441

[13] O. Mašek, V. Budarin, M. Gronnow, K. Crombie, P. Brownsort, E. Fitzpatrick, P. Hurst, “Microwave and slow pyrolysis biochar - Comparison of physical and functional properties”, Journal of Analytical and Applied Pyrolysis, vol. 100, pp. 41-48, 2013, doi: 10.1016/j.jaap.2012.11.015

[14] M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, L. Vithanage, Y. S. Ok, “Biochar as a sorbent for contaminant management in soil and water: A review”, Chemosphere, vol. 99, pp. 19-33, 2014, doi: 10.1016/j.chemosphere.2013.10.071

[15] X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, y Z. Yang, “Application of biochar for the removal of pollutants from aqueous solutions”, Chemosphere, vol. 125, pp. 70-85, 2015, doi: 10.1016/j.chemosphere.2014.12.058

[16] J. J. Manyà, M. Azuara, J. A. Manso, “Biochar production through slow pyrolysis of different biomass materials: Seeking the best operating conditions”, Biomass and Bioenergy, vol. 117, no. Agosto, pp. 115-123, 2018, doi: 10.1016/j.biombioe.2018.07.019

[17] A. Escalante, G. Pérez, C. Hidalgo, J. López, J. Campo, E. Valtierra, y J. Etchevers, “Biocarbón (biochar) I: Naturaleza, historia, fabricación y uso en el suelo Biocarbon (biochar) I: Nature, history, manufacture and use in soil”, Terra Latinoamericana, vol. 34, no. 3, pp. 367-382, 2016.

[18] J. Lehmann, “Bio-Energy in the Black”, Frontiers in Ecology and the Environment, vol. 5, no. Septiembre, pp. 381-387, 2007, doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2.

[19] P. Morseletto, “Targets for a circular economy”, Resources, Conservation and Recycling, vol. 153, pp. 53-59, 2020, doi: 10.1016/j.resconrec.2019.104553

[20] T. Sizmur, T. Fresno, G. Akgül, H. Frost, y E. Moreno-Jiménez, “Biochar modification to enhance sorption of inorganics from water”, Bioresource Technology, vol. 246, pp. 34-47, 2017, doi: 10.1016/j.biortech.2017.07.082

[21] M. Inyang y E. Dickenson, “The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review”, Chemosphere, vol. 134, pp. 232-240, 2015, doi: 10.1016/j.chemosphere.2015.03.072

[22] J. He, V. Strezov, T. Kan, H. Weldekidan, R. Kumar, “Slow pyrolysis of metal (loid) rich biomass from phytoextraction: Characterisation of biomass, biochar and bio-oil”, Energy Procedia, vol. 160, no. 2018, pp. 178-185, 2019, doi: 10.1016/j.egypro.2019.02.134

[23] P. Campos, A. Z. Miller, H. Knicker, M. F. Costa-Pereira, A. Merino, J. M. De la Rosa, “Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment”, Waste Management, vol. 105, pp. 256-267, 2020, doi: 10.1016/j.wasman.2020.02.013

[24] W. K. Kim, T. Shim, Y. S. Kim, S. Hyun, C. Ryu, Y. K. Park, J. Jung, “Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures”, Bioresource Technology, vol. 138, pp. 266-270, 2013, doi: 10.1016/j.biortech.2013.03.186

[25] V. T. Nguyen, T. B. Nguyen, C. W. Chen, C. M. Hung, J. H. Chang, C. D. Dong, “Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground”, Bioresource Technology, vol. 284, pp. 197-203, 2019, doi: 10.1016/j.biortech.2019.03.096

[26] Y. Lee, P. R. B. Eum, C. Ryu, Y. K. Park, J. H. Jung, S. Hyun, “Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1”, Bioresource Technology, vol. 130, pp. 345-350, 2013, doi: 10.1016/j.biortech.2012.12.012

[27] J. C. Arroyave-Manco, J.C., Arboleda, D.A. Hoyos-Ayala, A. P. Echavarría-Isaza, “Zeolitas LTA y FAU obtenidas a partir de cenizas volantes y su aplicación en remoción de Cr”, DYNA, vol. 85, no. 204, pp. 150-160, 2018, doi: 10.15446/dyna.v85n204.67096

[28] Z. B. Zhang, X. H. Cao, P. Liang, Y. H. Liu, “Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization”, Journal of Radioanalytical and Nuclear Chemistry, vol. 295, no. 2, pp. 1201-1208, 2013, doi: 10.1007/s10967-012-2017-2

[29] T. M. Abdel-Fattah, M. E. Mahmoud, S. B. Ahmed, M. D. Huff, J. W. Lee, S. Kumar, “Biochar from woody biomass for removing metal contaminants and carbon sequestration”, Journal of Industrial and Engineering Chemistry, vol. 22, pp. 103-109, 2015, doi: 10.1016/j.jiec.2014.06.030

[30] X. Xu, X. Cao, L. Zhao, “Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars”, Chemosphere, vol. 92, no. 8, pp. 955-961, 2013, doi: 10.1016/j.chemosphere.2013.03.009

[31] M. Zubair, M. S. Manzar, N. D. Mu’azu, I. Anil, N. L. Blaisi, M. A. Al-Harthi, “Functionalized MgAl-layered hydroxide intercalated date-palm biochar for Enhanced Uptake of Cationic dye: Kinetics, isotherm and thermodynamic studies”, Applied Clay Science, vol. 190, no. Diciembre, pp. 105587, 2020, doi: 10.1016/j.clay.2020.105587

[32] G. D. Vyavahare, R. G. Gurav, P. P. Jadhav, R. R. Patil, C. B. Aware, J. P. Jadhav, “Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity”, Chemosphere, vol. 194, pp. 306-315, 2018, doi: 10.1016/j.chemosphere.2017.11.180

[33] Q. Wang, B. Wang, X. Lee, J. Lehmann, B. Gao, “Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH”, Science of the Total Environment, vol. 634, pp. 188-194, 2018, doi: 10.1016/j.scitotenv.2018.03.189

[34] H. N. Tran, F. Tomul, N. Thi Hoang Ha, D. T. Nguyen, E. C. Lima, G. T. Le, C. Chang, V. Masindi, S. H. Woo, “Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism”, Journal of Hazardous Materials, vol. 394, pp. 122255, 2020.

[35] R. Shan, Y. Shi, J. Gu, J. Bi, H. Yuan, B. Luo, Y. Chen, “Aqueous Cr(VI) removal by biochar derived from waste mangosteen shells: Role of pyrolysis and modification on its absorption process”, Journal of Environmental Chemical Engineering, vol. 8, no. 4, pp. 103885, 2020, doi: 10.1016/j.jece.2020.103885

[36] F. Qi, Y. Yan, D. Lamb, R. Naidu, N. S. Bolan, Y. Liu, Y. Ok, S. Donne, y K. T. Semple, “Thermal stability of biochar and its effects on cadmium sorption capacity”, Bioresource Technology, vol. 246, pp. 48-56¸ 2017, doi: 10.1016/j.biortech.2017.07.033

[37] L. Sun, S. Wan, W. Luo, “Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies”, Bioresource Technology, vol. 140, pp. 406-413, 2013, doi: 10.1016/j.biortech.2013.04.116

[38] M. Idrees, S. Batool, T. Kalsoom, S. Yasmeen, A. Kalsoom, S. Raina, Q. Zhuang, J. Kong, “Animal manure-derived biochars produced via fast pyrolysis for the removal of divalent copper from aqueous media”, Journal of Environmental Management, vol. 213, pp. 109-118, 2018, doi: 10.1016/j.jenvman.2018.02.003

[39] L. Lonappan, T. Rouissi, S. K. Brar, M. Verma, R. Y. Surampalli, “Adsorption of diclofenac onto different biochar microparticles: Dataset – Characterization and dosage of biochar”, Data in Brief, vol. 16, pp. 460-465, 2018, doi: 10.1016/j.dib.2017.10.041

[40] R. Gokulan, A. Avinash, G. G. Prabhu, J. Jegan, “Remediation of remazol dyes by biochar derived from Caulerpa scalpelliformis - An eco-friendly approach”, Journal of Environmental Chemical Engineering, vol. 7, no. 5, pp. 103297, 2019, doi: 10.1016/j.jece.2019.103297

[41] L. Lu, Y. Lin, Q. Chai, S. He, C. Yang, “Removal of acenaphthene by biochar and raw biomass with coexisting heavy metal and phenanthrene”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 558, pp. 103-109, 2018, doi: 10.1016/j.colsurfa.2018.08.057

[42] Y. Deng, S. Huang, C. Dong, Z. Meng, X. Wang, “Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars”, Bioresource Technology, vol. 303, pp. 122853, 2020, doi: 10.1016/j.biortech.2020.122853

[43] B. J. Ni, Q. S. Huang, C. Wang, T. Y. Ni, J. Sun, W. Wei, “Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge”, Chemosphere, vol. 219, pp. 351-357, 2019, doi: 10.1016/j.chemosphere.2018.12.053

[44] S. Wang, S. Ai, C. Nzediegwu, J. H. Kwak, S. Islam, Y. Li, S. X. Chang, “Carboxyl and hydroxyl groups enhance ammonium adsorption capacity of iron (III) chloride and hydrochloric acid modified biochars!”, Bioresource Technology, vol. 309, pp. 123390, 2020.

[45] J. Liu, Z. Huang, Z. Chen, J. Sun, Y. Gao, E. Wu, “Resource utilization of swine sludge to prepare modified biochar adsorbent for the efficient removal of Pb(II) from water”, Journal of Cleaner Production, vol. 257, no. 1, pp. 120322, 2020, doi: 10.1016/j.jclepro.2020.120322

[46] N. Khan, P. Chowdhary, A. Ahmad, B. Shekher Giri, P. Chaturvedi, “Hydrothermal liquefaction of rice husk and cow dung in Mixed-Bed-Rotating Pyrolyzer and application of biochar for dye removal”, Bioresource Technology, vol. 309, no. Abril, pp. 123294, 2020, doi: 10.1016/j.biortech.2020.123294

[47] Y. Han, X. Cao, X. Ouyang, S. P. Sohi, J. Chen, “Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size”, Chemosphere, vol. 145, pp. 336-341, 2016, doi: 10.1016/j.chemosphere.2015.11.050

[48] P. A. Da Silva Veiga, J. Schultz, T. T. Matos, M. R. Fornari, T. G. Costa, L. Meurer, A. S. Mangrich, “Production of high-performance biochar using a simple and low-cost method: optimization of pyrolysis parameters and evaluation for water treatment”, Journal of Analytical and Applied Pyrolysis, vol. 148, pp. 104823, 2020, doi: 10.1016/j.jaap.2020.104823

[49] H. D. Reddy, K. Vijayaraghavan, J. A. Kim, Y. S. Yun, “Valorisation of post-sorption materials: Opportunities, strategies, and challenges”, Advances in Colloid and Interface Science, vol. 242, pp. 35-58, 2017, doi: 10.1016/j.cis.2016.12.002

[50] P. C.Bhomick, A. Supong, M. Baruah, C. Pongener, D. Sinha, “Pine Cone biomass as an efficient precursor for the synthesis of activated biocarbon for adsorption of anionic dye from aqueous solution: Isotherm, kinetic, thermodynamic and regeneration studies”, Sustainable Chemistry and Pharmacy, vol. 10, pp. 41-49, 2018, doi: 10.1016/j.scp.2018.09.001

[51] M. Essandoh, B. Kunwar, C. U. Pittman Jr, D. Mohan, T. Mlsna, “Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar”, Chemical Engineering Journal, vol. 265, pp. 219-227, 2015, doi: 10.1016/j.cej.2014.12.006

[52] I. S. Bădescu, D. Bulgariu, I. Ahmad, L. Bulgariu, “Valorisation possibilities of exhausted biosorbents loaded with metal ions – A review”, Journal of Environmental Management, vol. 224, no. Abril, pp. 288-297, 2018, doi: 10.1016/j.jenvman.2018.07.066

[53] H. B. Truong, I. A. Ike, Y. S. Ok, J. Hur, “Polyethyleneimine modification of activated fly ash and biochar for enhanced removal of natural organic matter from water via adsorption”, Chemosphere, vol. 243, pp. 125454, 2020, doi: 10.1016/j.chemosphere.2019.125454

[54] Y. Zhang, X. Yue, W. Xu, H. Zhang, F. Li, “Amino modification of rice straw-derived biochar for enhancing its cadmium (II) ions adsorption from water”, Journal of Hazardous Materials, vol. 379, no. Mayo, pp. 120783, 2019, doi: 10.1016/j.jhazmat.2019.120783

[55] O. Oginni, G. A. Yakaboylu, K. Singh, E. M. Sabolsky, G. Unal-Tosun, D. Jaisi, S. Khanal, A. Shah, “Phosphorus adsorption behaviors of MgO modified biochars derived from waste woody biomass resources”, Journal of Environmental Chemical Engineering, vol. 8, no. 2, pp. 103723, 2020, doi: 10.1016/j.jece.2020.103723

[56] H. Li, X. Dong, E. B. da Silva, L. M. de Oliveira, Y. Chen, L. Q. Ma, “Mechanisms of metal sorption by biochars: Biochar characteristics and modifications”, Chemosphere, vol. 178, pp. 466-478, 2017, doi: 10.1016/j.chemosphere.2017.03.072

[57] X. Zhou, J. Zhou, Y. Liu, J. Guo, J. Ren, F. Zhou, “Preparation of iminodiacetic acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd(II) removal in water”, Fuel, vol. 233, pp. 469-479, 2018, doi:10.1016/j.fuel.2018.06.075

[58] Y. Feng, P. Liu, Y. Wang, W. Liu, Y. Y. Liu, Y. Z. Finfrock, “Mechanistic investigation of mercury removal by unmodified and Fe-modified biochars based on synchrotron-based methods”, Science of the Total Environment, vol. 719, pp. 137435-137442, 2020, doi: 10.1016/j.scitotenv.2020.137435
Publicado
2020-11-05