Vol. 23 Núm. 4 (2024): Revista UIS Ingenierías
Artículos

Remoción de contaminantes a través de microalgas: hacia el desarrollo de una economía circular

Jinna M. Loaiza-González
Universidad de Antioquia
Ainhoa Rubio-Clemente
Universidad de Antioquia
Gustavo A. Peñuela
Universidad de Antioquia

Publicado 2024-11-28

Palabras clave

  • alga,
  • contaminación del agua,
  • contaminantes emergentes,
  • eficiencia,
  • microalga,
  • nutriente,
  • proceso biológico,
  • tratamiento alternativo,
  • viabilidad
  • ...Más
    Menos

Cómo citar

Loaiza-González, J. M., Rubio-Clemente, A., & Peñuela, G. A. . (2024). Remoción de contaminantes a través de microalgas: hacia el desarrollo de una economía circular. Revista UIS Ingenierías, 23(4), 123–132. https://doi.org/10.18273/revuin.v23n4-2024010

Resumen

 

La presencia de floraciones algales ha aumentado en extensión y frecuencia a nivel mundial. No obstante, actualmente, más que una problemática puede convertirse en una alternativa eficaz de tratamiento de aguas residuales. Es importante señalar que los procesos convencionales con los que operan las instalaciones de tratamiento de aguas residuales, en su mayoría, son ineficientes en cuanto a la eliminación de altas cargas de nutrientes. En este contexto, el uso de microalgas como la especie Chlorella spp. surge como una alternativa económicamente viable que permite una remoción efectiva de nutrientes y asegura la obtención de un efluente que cumpla con los límites máximos permitidos de descarga a cuerpos de agua. Adicionalmente, la biomasa derivada del tratamiento de aguas residuales con microalgas puede ser utilizada como biocombustible. En este trabajo, se describe la utilización de microalgas como un proceso biológico adecuado y rentable para la eliminación de nutrientes, permitiendo incluso la recuperación de energía en forma de la valorización de la biomasa. Así, se propone el uso de microalgas con miras a dar solución a la contaminación de las aguas con altas cargas de nutrientes.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. N. Morin-Crini, E. Lichtfouse, G. Liu, V. Balaram, A.R.L. Ribeiro, Z. Lu, G. Crini, et. al., “Worldwide cases of water pollution by emerging contaminants: a review”, Environ. Chem. Lett., vol. 20(4), pp. 2311-2338, 2022, doi: https://doi.org/10.1007/s10311-022-01447-4
  2. J. Mazurkiewicz, A. Mazur, R. Mazur, K. Chmielowski, W. Czekała, D. Janczak, “The process of microbiological remediation of the polluted Słoneczko reservoir in Poland: for reduction of water pollution and nutrients management”, Water, vol. 12(11), pp. 3002, 2020, doi: https://doi.org/10.3390/w12113002
  3. Q. He, L. Gao, Z. Wang, Y. Tang, B. Pan, M. Li, “Fluorescence characteristics of dissolved organic matter in several independent water bodies: possible sources and land-use effects”, Environ. Sci. Pollut. Research, vol. 28, pp. 33241-33253, 2021, doi: https://doi.org/10.1007/s11356-021-12972-0
  4. Y.A. Duan, X.S. Chen, Y. Huang, Y. Zhang, P. Wang, X.X. Duan, Q.L. Zhao, “Potential risk of eutrophication in the deepest lake of Southwest China: Insights from phosphorus enrichment in bottom water”, J. Contam. Hydrol., vol. 253, pp. 104127, 2023, doi: https://doi.org/10.1016/j.jconhyd.2022.104127
  5. S. Wang, J. Qian, B. Zhang, L. Chen, S. Wei, B. Pan, “Unveiling the Occurrence and Potential Ecological Risks of Organophosphate Esters in Municipal Wastewater Treatment Plants across China”, Environ. Sci. Technol., vol. 57(3), pp. 1907-1918, 2023, doi: https://doi.org/10.1021/acs.est.2c06077
  6. H. Awad, M.G. Alalm, H.K. El-Etriby, “Environmental and cost life cycle assessment of different alternatives for improvement of wastewater treatment plants in developing countries”, Sci. Total Environ., vol. 660, 57-68, 2019, doi: https://doi.org/10.1016/j.scitotenv.2018.12.386
  7. S. Madhav, A. Ahamad, A.K. Singh, J. Kushawaha, J.S. Chauhan, S. Sharma, P. Singh, “Water pollutants: sources and impact on the environment and human health”, Sensors in Water Pollutants Monitoring: Role of Material, pp. 43-62, 2020, doi: http://dx.doi.org/10.1007/978-981-15-0671-0_4
  8. C. Chacón, C. Andrade, C. Cárdenas, I. Araujo, E. Morales, “Uso de Chlorella sp. Y Scenedesmus sp. en la remoción de nitrógeno, fósforo y DQO de aguas residuales urbanas de Maracaibo, Venezuela”, Boletín Del Centro de Investigaciones Biológicas, vol. 38(2), pp. 1–13, 2004.
  9. E.C. McGriff, R.E. McKinney, “The removal of nutrients and organics by activated algae”, Water Res., vol. 6, pp. 1155–1164, 1972.
  10. L. Wang, M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, R. Ruan, “Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant”, App. Biochem. Biotechnol., vol. 162(4), pp. 1174–1186, 2010, doi: https://doi.org/10.1007/s12010-009-8866-7
  11. K. Li, Q. Liu, F. Fang, R. Luo, Q. Lu, W. Zhou, R. Ruan, “Microalgae-based wastewater treatment for nutrients recovery: A review”, Biores. Technol., vol. 291, pp. 121934, 2019, doi: https://doi.org/10.1016/j.biortech.2019.121934
  12. B. Molinuevo-Salces, B. Riaño, D. Hernández, M. C. García-González, “Microalgae and wastewater treatment: advantages and disadvantages”, Microalgae Biotechnol. Develop. Biofuel Wastewater Treatment, pp. 505-533, 2019, doi: https://doi.org/10.1007/978-981-13-2264-8_20
  13. T.M. Mata, A.A. Martins, N.S. Caetano, “Microalgae for biodiesel production and other applications: A review”, Renew. Sustain. Energy Rev., vol. 14(1), pp. 217–232, 2010, doi: https://doi.org/10.1016/j.rser.2009.07.020
  14. A. Shah, M. Shah, “Characterisation and bioremediation of wastewater: a review exploring bioremediation as a sustainable technique for pharmaceutical wastewater”, Groundwater Sustain. Develop., vol. 11, pp. 100383, 2020, doi: https://doi.org/10.1016/j.gsd.2020.100383
  15. A. Tawfik, S. Ismail, M. Elsayed, M.A. Qyyum, M. Rehan, “Sustainable microalgal biomass valorization to bioenergy: key challenges and future perspectives”, Chemosphere, pp. 133812, 2022, doi: https://doi.org/10.1016/j.chemosphere.2022.133812
  16. S.F. Ahmed, M. Mofijur, T.A. Parisa, N. Islam, F. Kusumo, A. Inayat, H.C. Ong, “Progress and challenges of contaminate removal from wastewater using microalgae biomass”, Chemosphere, vol. 286, 131656, 2022, doi: https://doi.org/10.1016/j.chemosphere.2021.131656
  17. A.F.M. Udaiyappan, H.A. Hasan, M.S. Takriff; S.R.S. Abdullah, “A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment”, J. Water Process Eng., vol. 20, pp. 8-21, 2017, doi: https://doi.org/10.1016/j.jwpe.2017.09.006
  18. W. Zhou, Q. Lu, P. Han, J. Li, “Microalgae Cultivation and Photobioreactor Design”, In Microalgae Cultivation for Biofuels Production, 2020, doi: https://doi.org/10.1016/B978-0-12-817536-1.00003-5
  19. A. Yousuf, “Fundamentals of Microalgae Cultivation”, In Microalgae Cultivation for Biofuels Production, 2020, doi: https://doi.org/10.1016/B978-0-12-817536-1.00003-5
  20. A. Udayan, R. Sirohi, N. Sreekumar, B.I. Sang, S. J. Sim, “Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives”, Biores. Technol., vol. 344, pp. 126406, 2022, doi: https://doi.org/10.1016/j.biortech.2021.126406
  21. A.K. Patel, Y.Y. Choi, S.J. Sim, “Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels”, Biores. Technol., vol. 300, pp. 122741, 2020, doi: https://doi.org/10.1016/j.biortech.2020.122741
  22. J. Zhan, J. Rong, Q. Wang, “Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect”, I. J. Hydrogen Energy, vol. 42(12), pp. 8505–8517, 2017, doi: https://doi.org/10.1016/j.ijhydene.2016.12.021
  23. T.K. Meng, M.A. Kassim, B. Cheirsilp, “Mixotrophic Cultivation: Biomass and Biochemical Biosynthesis for Biofuel Production”, In Microalgae Cultivation for Biofuels Production, 2020.
  24. M.M. Morales-Amaral, C. Gómez-Serrano, F.G. Acién, J.M. Fernández-Sevilla, E. Molina-Grima, “Production of microalgae using centrate from anaerobic digestion as the nutrient source”, Algal Research, vol. 9, pp. 297–305, 2015, doi: https://doi.org/10.1016/j.algal.2015.03.018
  25. Y. Li, W. Zhou, B. Hu, M. Min, P. Chen, R.R. Ruan, “Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors”, Biores. Technol., vol. 102(23), pp. 10861–10867, 2011, doi: https://doi.org/10.1016/j.biortech.2011.09.064
  26. P. Bohutskyi, D. C. Kligerman, N. Byers, L.K. Nasr, C. Cua, S. Chow, E.J. Bouwer, “Effects of inoculum size, light intensity, and dose of anaerobic digestion centrate on growth and productivity of Chlorella and Scenedesmus microalgae and their poly-culture in primary and secondary wastewater”, Algal Research, vol. 19, pp. 278–290, 2016, doi: https://doi.org/10.1016/j.algal.2016.09.010
  27. O. Konur, “Algal biomass production for biodiesel production: A review of the research”, Biodiesel fuels based on edible and nonedible feedstocks, wastes, and algae, pp. 695-717, 2021.
  28. O. Osundeko, H. Davies, J.K. Pittman, “Oxidative stress-tolerant microalgae strains are highly efficient for biofuel feedstock production on wastewater”, Biomass Bioener., vol. 56, pp. 284–294, 2013, doi: https://doi.org/10.1016/j.biombioe.2013.05.027
  29. J. Park, H.F. Jin, B.R. Lim, K.Y. Park, K. Lee, “Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp”, Biores. Technol., vol. 101, pp. 8649–8657, 2010, doi: https://doi.org/10.1016/j.biortech.2010.06.142
  30. A.L. Gonçalves, J.C. Pires, M.A. Simões, “Review on the use of microalgal consortia for wastewater treatment”, Algal Research, vol. 24, pp. 403-415, 2017, doi: https://doi.org/10.1016/j.algal.2016.11.008
  31. A. Abdelfattah, S.S. Ali, H. Ramadan, E.I. El-Aswar, R. Eltawab, S.H. Ho, J. Sun, “Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects”, Environ. Sci. Ecotechnol., pp. 100205, 2022, doi: https://doi.org/10.1016/j.ese.2022.100205
  32. S. Hongyang, Z. Yalei, Z. Chunmin, Z. Xuefei, L. Jinpeng, “Cultivation of Chlorella pyrenoidosa in soybean processing wastewater”, Biores. Technol., vol. 102(21), pp. 9884-9890, 2011, doi: https://doi.org/10.1016/j.biortech.2011.08.016
  33. J. Sharma, V. Kumar, S.S. Kumar, S.K. Malyan, T. Mathimani, N.R. Bishnoi, A. Pugazhendhi, “Microalgal consortia for municipal wastewater treatment – Lipid augmentation and fatty acid profiling for biodiesel production”, J. Photochem. Photobiol. B, vol. 202, pp. 111638, 2020, doi: https://doi.org/10.1016/j.jphotobiol.2019.111638
  34. S. Szwaja, M. Debowski, M. Zieliński, M. Kisielewska, E. Stańczyk-Mazanek, M.M. Sikorska, “Influence of a light source on microalgae growth and subsequent anaerobic digestion of harvested biomass”, Biomass Bioener, vol. 91, pp. 243–249, 2016, doi: https://doi.org/10.1016/j.biombioe.2016.05.031b
  35. V.R.V. Ashwaniy, M. Perumalsamy, S. Pandian, “Enhancing the synergistic interaction of microalgae and bacteria for the reduction of organic compounds in petroleum refinery effluent”, Environ. Technol. Inn., vol. 19, pp. 100926, 2020, doi: https://doi.org/10.1016/j.eti.2020.100926
  36. G. Markou, D. Georgakakis, “Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review”, App. Energy, vol. 88(10), pp. 3389–3401, 2011, doi: https://doi.org/10.1016/j.apenergy.2010.12.042
  37. D. Nagarajan, D.J. Lee, S. Varjani, S.S. Lam, S.I. Allakhverdiev, J.S. Chang, “Microalgae-based wastewater treatment–Microalgae-bacteria consortia, multi-omics approaches and algal stress response”, Sci. Total Environ., vol. 845, pp. 157110, 2022, doi: https://doi.org/10.1016/j.scitotenv.2022.157110
  38. S. Maryjoseph, B. Ketheesan, “Microalgae based wastewater treatment for the removal of emerging contaminants: A review of challenges and opportunities”, Case Studies Chem. Environ. Eng., vol. 2, pp. 100046, 2020, doi: https://doi.org/10.1016/j.cscee.2020.100046
  39. P. Kumar, K. Hegde, S.K. Brar, M. Cledon, A. Kermanshahi-pour, “Potential of biological approaches for cyanotoxin removal from drinking water: A review”, Ecotoxicol. Environ. Safety, vol. 172, pp. 488–503, 2019, doi: https://doi.org/10.1016/j.ecoenv.2019.01.066
  40. D.J. Gilmour, “Microalgae for biofuel production”, Adv. App. Microbiol., vol. 109, pp. 1-30, 2019, doi: https://doi.org/10.1186/s13068-024-02461-0
  41. P. Zhang, L. Feng, B. Su, X. Li, “Microalgae cultivated in wastewater catalytic hydrothermal liquefaction: Effects of process parameter on products and energy balance”, J. Clean. Prod., vol. 341, pp. 130895, 2022, doi: https://doi.org/10.1016/j.jclepro.2022.130895
  42. E. Kouhgardi, S. Zendehboudi, O. Mohammadzadeh, A, Lohi, I. Chatzis, “Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges”, Renew. Sustain. Energy Rev. vol. 172, pp. 113012, 2023, doi: https://doi.org/10.1016/j.rser.2022.113012
  43. Z. Yin, L. Zhu, S. Li, T. Hu, R. Chu, F. Mo, B. Li, “A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions”, Biores. Technol., vol. 301, pp. 122804, 2020, doi: https://doi.org/10.1016/j.biortech.2020.122804
  44. U. Suparmaniam, M.K. Lam, Y. Uemura, J.W. Lim, K.T. Lee, S.H. Shuit, “Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review”, Renew. Sustain. Energy Rev., vol. 115, pp. 109361, 2019, doi: https://doi.org/10.1016/j.rser.2019.109361
  45. Y. Liu, W. Jin, X. Zhou, S.F. Han, R. Tu, X. Feng, Q. Wang, “Efficient harvesting of Chlorella pyrenoidosa and Scenedesmus obliquus cultivated in urban sewage by magnetic flocculation using nano-Fe3O4 coated with polyethyleneimine”, Bioresource Technol., vol. 290, pp. 121771, 2019, doi: https://doi.org/10.1016/j.biortech.2019.121771
  46. X. Li, B. Liu, Y. Lao, P. Wan, X. Mao, F. Chen, “Efficient magnetic harvesting of microalgae enabled by surface-initiated formation of iron nanoparticles”, Chem. Eng. J., vol. 408, pp. 127252, 2021, doi: https://doi.org/10.1016/j.cej.2020.127252
  47. K.S. Chan, S.K. Leung, S.S.Y. Wong, S.S. Chan, D.W.S Suen, C.W. Tsang, C.Y. Chan, “Development of an Energy-Efficient Rapid Microalgal Cell-Harvesting Method Using Synthesized Magnetic Nanocomposites”, Water, vol. 15(3), pp. 545, 2023, doi: https://doi.org/10.3390/w15030545
  48. K. Gerulová, A., Kucmanová, Z. Sanny, Z. Garaiová, E. Seiler, M. Čaplovičová, M. Palcut, “Fe3O4-PEI nanocomposites for magnetic harvesting of Chlorella vulgaris, Chlorella ellipsoidea, Microcystis aeruginosa, and Auxenochlorella protothecoides,” Nanomaterials., vol. 12, pp. 1786, 2022, doi: https://doi.org/10.3390/nano12111786
  49. A. Abdelfattah, S.S. Ali, H. Ramadan, E.I. El-Aswar, R. Eltawab, S.H. Ho, J. Sun, “Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects”, Environ. Sci. Ecotechnol., vol. 13, pp. 100205, 2023, doi: https://doi.org/10.1016/j.ese.2022.100205
  50. S.F. Ahmed, M. Mofijur, T.A. Parisa, N. Islam, F. Kusumo, A. Inayat, H.C. Ong, “Progress and challenges of contaminate removal from wastewater using microalgae biomass”, Chemosphere, vol. 286, pp. 131656, 2022, doi: https://doi.org/10.1016/j.chemosphere.2021.131656
  51. A. Morillas-España, T. Lafarga, A. Sánchez-Zurano, F.G. Acién-Fernández, C. González-López, “Microalgae based wastewater treatment coupled to the production of high value agricultural products: Current needs and challenges”, Chemosphere, vol. 291, pp. 132968, 2022, doi: https://doi.org/10.1016/j.chemosphere.2021.132968