Vol. 24 Núm. 1 (2025): Revista UIS Ingenierías
Artículos

Evaluación de la degradación de cianotoxinas mediante ultrasonido de baja frecuencia

Jinna Marcela Loaiza-González
Universidad de Antioquia
Ainhoa Rubio-Clemente
Universidad de Antioquia
Natalia Andrea Herrera- Loaiza
Universidad de Antioquia
Gustavo A. Peñuela-Mesa
Universidad de Antioquia

Publicado 2025-03-19

Palabras clave

  • baja frecuencia,
  • calidad del agua,
  • cianotoxinas,
  • evaluación de riesgos,
  • floración de algas,
  • proceso de oxidación avanzada,
  • purificación de agua,
  • reservorio tropical,
  • sonicación,
  • tratamiento alternativo
  • ...Más
    Menos

Cómo citar

Loaiza-González , J. M. ., Rubio-Clemente, A., Herrera- Loaiza, N. A. ., & Peñuela-Mesa , G. A. . (2025). Evaluación de la degradación de cianotoxinas mediante ultrasonido de baja frecuencia. Revista UIS Ingenierías, 24(1), 91–100. https://doi.org/10.18273/revuin.v24n1-2025008

Resumen

Las cianotoxinas, como las microcistinas (MC) y las nodularinas (NOD), son muy resistentes y estables a la degradación química y física convencional, además de representar un mayor riesgo para la salud humana. En el presente trabajo se utilizó el ultrasonido de baja frecuencia como proceso de oxidación avanzada para degradar cianotoxinas presentes en un embalse colombiano, evaluándose la eficiencia del proceso de sonicación, al utilizar diferentes potencias (10, 30 y 50 W) y tiempos de exposición (5, 10, 20 y 30 min) bajo una frecuencia de 40 kHz. Se encontró que el uso de ultrasonido no fue efectivo para concentraciones de hasta 2595,42 μg/L de MC-LR, ya que no se obtuvieron tasas de degradación significativas después de 30 minutos de tratamiento. Además, se evidenció una diferencia notable en las concentraciones de cianotoxinas en el agua entre las campañas de muestreo. En este sentido, la evaluación de riesgos, la implementación de programas de monitoreo y los esfuerzos de mitigación en los embalses merecen mayor atención.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. M. Jablonska, L. Cerasino, A. Boscaini, C. Capelli, C. Greco, A.K. Klemenčič, R. Kurmayer, “Distribution of toxigenic cyanobacteria in Alpine lakes and rivers as revealed by molecular screening,” Water Res., vol. 258, pp. 121783, 2024, doi: https://doi.org/10.1016/j.watres.2024.121783
  2. K.M. Stroski, D.L. Roelke, C.M. Kieley, R. Park, K.L. Campbell, N.H. Klobusnik, B.W. Brooks, “What, how, when, and where: Spatiotemporal water quality hazards of cyanotoxins in subtropical eutrophic reservoirs,” Environ. Sci. Technol., vol. 58(3), pp. 1473-1483, 2024, doi: https://doi.org/10.1021/acs.est.3c06798
  3. J.S. Yunes, “Cyanobacterial Toxins”, In Cyanobacteria: From Basic Science to Applications. Academic Press, 2019, doi: https://doi.org/10.1016/C2017-0-01395-2
  4. T.L. Pham, M. Utsumi, “An overview of the accumulation of microcystins in aquatic ecosystems,” J. Environ. Manage, vol. 213, pp. 520–529, 2018, doi: https://doi.org/10.1016/j.jenvman.2018.01.077
  5. D. Glidewell, J.E., Beyer, K.D. Hambright, “Microcystins bioaccumulate but do not biomagnify in an experimental aquatic food chain,” Harmful Algae, vol. 141, pp. 102768, 2025, doi: https://doi.org/10.1016/j.hal.2024.102768
  6. A. Umehara, T. Takahashi, T. Komorita, R. Orita, J.W. Choi, R. Takenaka, R. Mabuchi, H.D. Park, H. Tsutsumi, “Widespread dispersal and bio-accumulation of toxic microcystins in benthic marine ecosystems,” Chemosphere, vol. 167, pp. 492–500, 2017, doi: https://doi.org/10.1016/j.chemosphere.2016.10.029
  7. M. Crettaz-Minaglia, D. Sedan, L. Giannuzzi, “Bioacumulacion y biomagnificacion de cianotoxinas en organismos acuaticos de agua dulce,” In Cianobacterias como determinantes ambientales de la salud, pp. 171–186, Ministerio de Salud de la Nación, departamento de Salud Ambiental, 2017.
  8. E.M.L. Janssen, “Cyanobacterial peptides beyond microcystins – A review on co-occurrence, toxicity, and challenges for risk assessment,” Water Res., vol. 151, pp. 488–499, 2019, doi: https://doi.org/10.1016/j.watres.2018.12.048
  9. G. Kaur, “Freshwater Cyanotoxins”, In Biomarkers in Toxicology. Elsevier Inc. pp. 601-613, 2019.
  10. D.M.M. Caramés, “Tecnologías de control de floraciones de cianobacterias y algas nocivas en cuerpos de agua, con énfasis en el uso de irradiación por ultrasonido,” Innotec, vol. 12, no. 12, pp. 54–61, 2016.
  11. WHO, “Guidelines for drinking-water quality, 4th edition,” The World Health Organization. 2011.
  12. H. Yang, Y. Yao, W. Chen, X. Gu, H. Chen, Q. Zeng, T. Xiang, “Occurrence and risk assessment of different cyanotoxins and their relationship with environmental factors in six typical eutrophic lakes of China,” Environ. Res., pp. 121184, 2025, doi: https://doi.org/10.1016/j.envres.2025.121184
  13. L.M. Grattan, S. Holobaugh, J.G. Morris, “Harmful algal blooms and public health,” Harmful Algae, vol. 57, pp. 2–8, 2016, doi: https://doi.org/10.1016/j.hal.2016.05.003
  14. F.M. Buratti, M. Manganelli, S. Vichi, M. Stefanelli, S. Scardala, E. Testai, E. Funari, “Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation,” Archives Toxicol., vol. 91, no. 3, pp. 1049–1130, 2017, doi: https://doi.org/10.1007/s00204-016-1913-6
  15. B.W. Brooks, J.M. Lazorchak, M.D.A. Howard, M.V.V. Johnson, S.L. Morton, D.A.K. Perkins, E.D. Reavie, G.I. Scott, S.A. Smith, J.A. Steevens, “Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?,” Environ. Toxicol., Chem., vol. 35, no. 1, pp. 6–13, 2016, doi: https://doi.org/10.1002/etc.3220
  16. V. Gaget, M. Lau, B. Sendall, S. Froscio, A.R. Humpage, “Cyanotoxins: Which detection technique for an optimum risk assessment?,” Water Res., vol. 118, pp. 227–238, 2017, doi: https://doi.org/10.1016/j.watres.2017.04.025
  17. J. Li, R. Li, J. Li., “Current research scenario for microcystins biodegradation – A review on fundamental knowledge, application prospects and challenges, ” Sci. Total Environ., vol. 595, pp. 615–632, 2017, doi: https://doi.org/10.1016/j.scitotenv.2017.03.285
  18. E.U. Alum, “The role of toxicology in climate change: Understanding the risks of novel environmental toxins,” Sustain. Environ., vol. 11, no. 1, pp. 2467485, 2025, doi: https://doi.org/10.1080/27658511.2025.2467485
  19. H.W. Paerl, M.A. Barnard, “Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human- and climatically-altered world,” Harmful Algae, vol. 96, pp. 101845, 2020, doi: https://doi.org/10.1016/j.hal.2020.101845
  20. P.M. Glibert, “Harmful algae at the complex nexus of eutrophication and climate change,” Harmful Algae, vol. 91, pp. 101583, 2020, doi: https://doi.org/10.1016/j.hal.2019.03.001
  21. X. Hou, L. Feng, Y. Dai, C. Hu, L. Gibson, J. Tang, Z. Lee, Y. Wang, X. Cai, J. Liu, Y. Zheng, C. Zheng, “Global mapping reveals increase in lacustrine algal blooms over the past decade,” Nature Geosci., vol. 15, no.2, pp. 130–134, 2022, doi: https://doi.org/10.1038/s41561-021-00887-x
  22. H. Wei, Y. Jia, Z. Wang, “Microcystin pollution in lakes and reservoirs: A nationwide meta-analysis and assessment in China,” Environ. Pollut., vol. 309, pp. 119791, 2022, doi: https://doi.org/10.1016/j.envpol.2022.119791
  23. L.F. Caly, D.C. Rodríguez, G.A. Peñuela, “Monitoring of cyanobacteria and cyanotoxins in a Colombian tropical reservoir,” Environ. Sci. Pollut. Res., vol. 29, no. 35, pp. 52775–52787, 2022, doi: https://doi.org/10.1007/s11356-022-19216-9
  24. C. León, G.A. Peñuela, “Detected cyanotoxins by UHPLC MS/MS technique in tropical reservoirs of northeastern Colombia,” Toxicon, vol. 167, pp. 38–48, 2019, doi: https://doi.org/10.1016/j.toxicon.2019.06.010
  25. J.M. Loaiza-González, A. Rubio-Clemente, M.C. León-Salazar, D.C. Rodríguez Loaiza, G.A. Peñuela Mesa, “Recurrencia de toxinas cianobacterianas en cuerpos de agua eutrofizados,” In Prácticas y herramientas de sostenibilidad. pp. 153–181, Tecnológico de Antioquia Institución Universitaria, 2021.
  26. K. Palacio, E. Hernández, G. Peñuela, N. Aguirre, F. Vélez, “Características morfológicas de las cianobacterias y fitoplancton dominante en tres embalses de Antioquia: un enfoque basado en la forma y el biovolumen,” Revista U.D.C.A., vol. 22, no. 2, pp. e1306, 2019, doi: https://doi.org/10.31910/rudca.v22.n2.2019.1306
  27. M. Munoz, S. Cirés, Z.M. de Pedro, J.A. Colina, Y. Velásquez-Figueroa, J. Carmona-Jiménez, A. Caro-Borrero, A., Salazar, M.C. Santa María Fuster, D. Contreras, D., E. Perona, A. Quesada, J.A. Casas, “Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: Challenges for risk management and opportunities for removal by advanced technologies,” Sci. Total Environ., vol. 761, pp. 143197, 2021, doi: https://doi.org/10.1016/j.scitotenv.2020.143197
  28. S. Salomón, C.A. Rivera-Rondón, A.M. Zapata, “Cyanobacterial blooms in Colombia: State of knowledge and research needs in the context of climate global change,” Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, vol. 44, no. 171, pp. 376–391, 2020, doi: https://doi.org/10.18257/raccefyn.1050
  29. INS, “Manual de instrucciones para la toma, preservación y transporte de muestras de agua de consumo humano para análisis de laboratorio,” Instituto Nacional de Salud. Colombia, 2011.
  30. S. Park, Y.H. Kim, J.W. Lee, S. Jang, J.E. Kim, G. Kang, Y.K. Choi, “Adsorptive performance of rice husk-derived biochar for nodularin cyanotoxin from aqueous solution: Isotherm, kinetic, regeneration, and column studies,” J. Water Process Eng., vol. 70, pp. 106866, 2025, doi: https://doi.org/10.1016/j.jwpe.2024.106866
  31. X. Xian, C. Luo, G. Lian, X. Yu, L. Zhu. “Cyanobacteria in late lag and exponential phases suit different pre-chlorination and coagulation strategies”, Environ. Pollut., vol. 366, pp. 125427, 2025, doi: https://doi.org/10.1016/j.envpol.2024.125427
  32. H. Walker, Cyanotoxins in Drinking Water: Fundamental Concepts and Solutions. CRC Press, 2025.
  33. Y. Yao, Y Pan, S. Liu, “Power ultrasound and its applications: A state-of-the-art review”, Ultrasonics Sonochem, vol. 62, pp. 104722, 2020, doi: https://doi.org/10.1016/j.ultsonch.2019.104722
  34. J. Park, J. Church, Y. Son, K.T. Kim, W.H. Lee, “Recent advances in ultrasonic treatment: Challenges and field applications for controlling harmful algal blooms (HABs),” Ultrasonics Sonochem., vol. 38, pp. 326–334, 2017, doi: https://doi.org/10.1016/j.ultsonch.2017.03.003
  35. U.S. EPA, “Single Laboratory Validated Method for Determination of Microcystins and Nodularin in Ambient Freshwaters by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)”, United States Environmental Protection Agency, 2017.
  36. C. Parra-Enciso, B.S. Avila, A. Rubio-Clemente, G.A. Peñuela, “Degradation of diclofenac through ultrasonic-based advanced oxidation processes at low frequency,” J. Environ. Chem. Eng., vol. 10, pp. 108296, 2022, doi: https://doi.org/10.1016/j.jece.2022.108296
  37. J.M. Loaiza-González, A. Rubio-Clemente, G.A. Peñuela-Mesa, “Aplicación de ultrasonido para el control de cianobacterias y la degradación de cianotoxinas,” Revista UIS Ingenierías, vol. 22, no. 4, pp. 51-60, 2023, doi: https://doi.org/10.18273/revuin.v22n4-2023005
  38. B. Ma, Y. Chen, H. Hao, M. Wu, B. Wang, H. Lv, G. Zhang, “Influence of ultrasonic field on microcystins produced by bloom-forming algae,” Colloids Surfaces B, vol. 41, pp. 2–3, pp. 197–201, 2005, doi: https://doi.org/10.1016/j.colsurfb.2004.12.010
  39. G. Chen, X. Ding, W. Zhou, “Study on ultrasonic treatment for degradation of Microcystins (MCs)”, Ultrasonics Sonochem., vol. 63, pp. 104900, 2020, doi: https://doi.org/10.1016/j.ultsonch.2019.104900
  40. Q. He, Z. Liu, M. Li, “Effects of aeration induced turbulence on colonial morphology and microcystin release of the bloom-forming cyanoabcterium Microcystis,” J. Oceanol. Limnol., pp. 1-12, 2024, doi: https://doi.org/10.1007/s00343-024-4096-7
  41. P. Wang, B. Du, J. Smith, W. Lao, C.S. Wong, E.Y. Zeng, “Development and field evaluation of the organic-diffusive gradients in thin-films (o-DGT) passive water sampler for microcystins,” Chemosphere, vol. 287, pp. 132079, 2022, doi: https://doi.org/10.1016/j.chemosphere.2021.132079
  42. J.M. Loaiza-González, A. Rubio-Clemente, G.A. Peñuela, “Cyanotoxin monitoring and detection using passive sampling application,” Water Air Soil Pollut., vol. 235, no. 7, pp. 423, 2024, doi: https://doi.org/10.1007/s11270-024-07195-1