Published 2021-01-02
Keywords
- cavitation,
- cavitation number,
- cavitation inception,
- hydrokinetic turbine,
- hydrofoil
- pressure coefficient,
- CFD,
- Eppler 420; k-ω SST turbulence model,
- lift coefficient ...More
How to Cite
Abstract
Resistance to cavitation is an important requirement in the design of hydrokinetic turbines for marine or river applications due to cavitation has been found to contribute to the turbine blade wear, corrosion, vibration, and fatigue. The presence of cavitation in the blades can lead to a decrease in the turbine performance and the reduction of its useful life. Therefore, it is crucial to include a cavitation study in the analysis and development of hydrokinetic systems. In this work, the elements to be considered in a cavitation study of the blades of a hydrokinetic turbine are presented. The comparison between the distribution of the pressure coefficient ( ) on the Eppler 420 hydrofoil and the number of cavitation ( ) was presented as a criterion to determine the cavitation occurrence. was calculated by numerical simulation by using the Ansys Fluent software. The results showed that the Eppler 420 hydrofoil could be used for the design of the blades of hydrokinetic turbines.
Downloads
References
[2] O. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, M. Pourkashanian, “Large scale integration of renewable energy sources (RES) in the future Colombian energy system”, Energy, vol. 186, 115805, 2019, doi: 10.1016/j.energy.2019.07.135
[3] J. G. Rueda-Bayona, A. Guzmán, J. J. C. Eras, R. Silva-Casarín, E. Bastidas-Arteaga, J. Horrillo-Caraballo, “Renewables energies in Colombia and the opportunity for the offshore wind technology”, Journal of Cleaner Production, vol. 220, pp. 529-543, 2019.
[4] T. Gómez-Navarro, D. Ribó-Pérez, “Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia”, Renewable and Sustainable Energy Reviews, vol. 90, pp. 131-141, 2018, doi: 10.1016/j.rser.2018.03.015
[5] F. Henao, I. Dyner, “Renewables in the optimal expansion of colombian power considering the Hidroituango crisis”, Renewable Energy, vol. 158, pp. 612-627, 2020, doi: 10.1016/j.renene.2020.05.055
[6] D. Rodríguez-Urrego, L. Rodríguez-Urrego, “Photovoltaic energy in Colombia: current status, inventory, policies and future prospects”, Renewable and Sustainable Energy Reviews, vol. 92, pp. 160-170, 2018, doi: 10.1016/j.rser.2018.04.065
[7] R. D. M. Ramírez, F. I. Cuervo, C. A. M. Rico, “Technical and financial valuation of hydrokinetic power in the discharge channels of large hydropower plants in Colombia: A case study”, Renewable Energy, vol. 99, pp. 136-147, 2016, doi: 10.1016/j.renene.2016.06.047
[8] M. I. Yuce, A. Muratoglu, “Hydrokinetic energy conversion systems: A technology status review”, Renewable and Sustainable Energy Reviews, vol. 43, pp. 72-82, 2015, doi: 10.1016/j.rser.2014.10.037
[9] K. Kusakana, “Energy management of a grid-connected hydrokinetic system under Time of Use tariff”, Renewable Energy, vol. 101, pp. 1325-1333, 2017.
[10] M. R. Motley, R. B. Barber, "Passive control of marine hydrokinetic turbine blades”, Composite Structures, vol. 110, pp. 133-139, 2014, doi: 10.1016/j.compstruct.2013.11.026
[11] R. C. Adhikari, J. Vaz, D. Wood, “Cavitation inception in crossflow hydro turbines”, Energies, vol. 9, no. 4, pp. 237, 2016, doi: 10.3390/en9040237
[12] P. A. S. F. da Silva, L. D. Shinomiya, T. F. de Oliveira, J. R. P. Vaz, A. L. A. Mesquita, A. C. P. B. Junior, “Design of hydrokinetic turbine blades considering cavitation”, en The 7th International Conference on Applied Energy–ICAE2015, Energy Procedia, vol. 75, pp. 277-282, 2015.
[13] P. Kumar, R. P. Saini, “Study of cavitation in hydro turbines-A review”, Renewable and Sustainable Energy Reviews, vol. 14, n. 1, pp. 374-383, 2010, doi: 10.1016/j.rser.2009.07.024
[14] A. F. Molland, A. S. Bahaj, J. R. Chaplin, W. M. J. Batten, “Measurements and predictions of forces, pressures and cavitation on 2-D sections suitable for marine current turbines”, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, vol. 218, no. 2, pp. 127-138, 2004, doi: 10.1243/1475090041651412
[15] L. Soulat, A. F. Pouangue, S. Moreau, “A high-order sensitivity method for multi-element high-lift device optimization”, Computers & Fluids, vol. 124, pp. 105-116, 2016, doi: 10.1016/j.compfluid.2015.10.013
[16] A. S. Bahaj, A. F. Molland, J. R. Chaplin, W. M. J. Batten, “Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank”, Renewable Energy, vol. 32, no. 3, pp. 407-426, 2007, doi: 10.1016/j.renene.2006.01.012
[17] Q. Guo, L. J. Zhou, Z. W. Wang, “Numerical simulation of cavitation for a horizontal axis marine current turbine”, en IOP Conference Series: Materials Science and Engineering, vol. 72, no. 4, pp. 042045, 2015, doi: 10.1088/1757-899X/72/4/042045
[18] W. M. J. Batten, A. S. Bahaj, A. F. Molland, J. R. Chaplin, “The prediction of the hydrodynamic performance of marine current turbines”, Renewable Energy, vol. 33, no. 5, pp. 1085-1096, 2008, doi: 10.1016/j.renene.2007.05.043
[19] J. N. Goundar, M. R. Ahmed, Y. H. Lee, “Numerical and experimental studies on hydrofoils for marine current turbines”, Renewable Energy, vol. 42, pp. 173-179, 2012, doi: 10.1016/j.renene.2011.07.048
[20] W. C. Schleicher, J. D. Riglin, Z. A. Kraybill, A. Oztekin, R. C. Klein Jr, “Design and simulation of a micro hydrokinetic turbine”, en Proceedings of the 1st Marine Energy Technology Symposium, METS13, Washington, USA, 2013, pp. 1-8.
[21] S. Nigam, S. Bansal, T. Nema, V. Sharma, R. K. Singh, “Design and Pitch Angle Optimisation of Horizontal Axis Hydrokinetic Turbine with Constant Tip Speed Ratio”, en MATEC Web of Conferences 95, 2017, pp. 06004, doi: 10.1051/matecconf/20179506004
[22] P. A. S. F. Silva, L. D. Shinomiya, T. F. de Oliveira, J. R. P. Vaz, A. L. A. Mesquita, A. C. P. B. Junior, “Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM”, Applied Energy, vol. 185, pp. 1281-1291, 2017.
[23] A. Muratoglu, M. I. Yuce, “Performance Analysis of Hydrokinetic Turbine Blade Sections”, Journal ISSN, vol. 2, pp. 1-10, 2015.
[24] D. A. do Rio Vaz, J. R. Vaz, P. A. Silva, “An approach for the optimization of diffuser-augmented hydrokinetic blades free of cavitation”, Energy for Sustainable Development, vol. 45, pp. 142-149, 2018, doi: 10.1016/j.esd.2018.06.002
[25] J. R. Vaz, D. H. Wood, “Aerodynamic optimization of the blades of diffuser-augmented wind turbines”, Energy Conversion and Management, vol. 123, pp. 35-45, 2016, doi: 10.1016/j.enconman.2016.06.015
[26] H. Glauert, W. Durand, “Aerodynamic theory”, en Chapter XI. Division l. Airplanes propellers, New York: Dover, 1963, pp. 191-195.
[27] A. F. P. Ribeiro, A. M. Awruch, H. M. Gomes, “An airfoil optimization technique for wind turbines, Applied Mathematical Modelling”, vol. 36, no. 10, pp. 4898-4907, 2012, doi: 10.1016/j.apm.2011.12.026
[28] W. C. Schleicher, J. D. Riglin, A. Oztekin, “Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design”, Renewable Energy, vol. 76, pp. 234-241, 2015, doi: 10.1016/j.renene.2014.11.032
[29] P. A. Silva, T. F. Oliveira, A. C. Brasil Junior, J. R. Vaz, J.R., “Numerical Study of Wake Characteristics in a Horizontal-Axis Hydrokinetic Turbine”, Anais da Academia Brasileira de Ciências, vol. 88, no. 4, pp. 2441-2456, 2016, doi: 10.1590/0001-3765201620150652
[30] J. M. R. Gorle, L. Chatellier, F. Pons, M. Ba, “Flow and performance analysis of H-Darrieus hydroturbine in a confined flow: A computational and experimental study”, Journal of Fluids and Structures, vol. 66, pp. 382-402, 2016, doi: 10.1016/j.jfluidstructs.2016.08.003
[31] X. Wang, B. Song, P. Wang, C. Sun, “Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization”, International Journal of Naval Architecture and Ocean Engineering, vol. 10, no. 6, pp. 730-740, 2018, doi: 10.1016/j.ijnaoe.2017.12.005
[32] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA journal, vol. 32, no. 8, pp. 1598-1605, 1994, doi: 10.2514/3.12149
[33] J. Morgado, R. Vizinho, M. A. R. Silvestre, J. C. Páscoa, “XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils”, Aerospace Science and Technology, vol. 52, pp. 207-214, 2016, doi: 10.1016/j.ast.2016.02.031
[34] W. Tian, Z. Mao, H. Ding, “Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine”, International Journal of Naval Architecture and Ocean Engineering, vol. 10, no. 6, pp. 782-793, 2018, doi: 10.1016/j.ijnaoe.2017.10.006
[35] A. Abutunis, R. Hussein, K. Chandrashekhara, “A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application”, Renewable Energy, vol. 136, pp. 1281-1293, 2019, doi: 10.1016/j.renene.2018.09.105
[36] E. Chica, J. Aguilar, A. Rubio-Clemente, “Analysis of a lift augmented hydrofoil for hydrokinetic turbines”, Renewable Energy and Power Quality Journal, vol.17, pp. 49-55, 2019.
[37] E. Chica, J. A. Bedoya, y A. Rubio-Clemente, “Investigación numérica sobre el uso de álabes multielemento en turbina hidrocinética de eje horizontal”, Revista UIS Ingenierías, vol. 18, no. 3, 117-128, 2019.
[38] P. J. Roache, “Quantification of uncertainty in computational fluid dynamics”, Annual review of fluid Mechanics, vol. 29, no. 1, 123-160, 1997, doi: 10.1146/annurev.fluid.29.1.123
[39] A. P. Prakoso, A. I. Siswantara, D. Adanta, “Comparison between 6-DOF UDF and moving mesh approaches in CFD methods for predicting cross-flow pico-hydro turbine performance”, CFD Letters, vol. 11, no. 6, 86-96, 2019.
[40] P. J. Roache, “ Perspective: a method for uniform reporting of grid refinement studies”. Journal of Fluids Engineering, vol. 116, pp. 405-413, 1994, doi: 10.1115/1.2910291