Vol. 22 Núm. 4 (2023): Revista UIS Ingenierías
Artículos

Resistencia a compresión de especímenes cilíndricos de concreto reforzados con mallas de metal expandido

Orlando Giraldo-Bolívar
Universidad Nacional de Colombia
Luis Lara-Valencia
Universidad Nacional de Colombia
Carlos Alberto Graciano-Gallego
Universidad Nacional de Colombia

Publicado 2023-10-09

Palabras clave

  • resistencia a compresión,
  • concreto,
  • metal expandido,
  • ferrocemento,
  • reforzamiento,
  • mallas metálicas,
  • construcción,
  • cemento,
  • propiedades mecánicas
  • ...Más
    Menos

Cómo citar

Giraldo-Bolívar , O. ., Lara-Valencia , L. ., & Graciano-Gallego, C. A. (2023). Resistencia a compresión de especímenes cilíndricos de concreto reforzados con mallas de metal expandido. Revista UIS Ingenierías, 22(4), 19–30. https://doi.org/10.18273/revuin.v22n4-2023003

Resumen

Este trabajo presenta un estudio experimental sobre la resistencia a la compresión de cilindros de concreto reforzados con mallas de metal expandido. La investigación tiene como objetivo comparar la resistencia a la compresión de especímenes de concreto reforzados con mallas metálicas expandidas con diferentes orientaciones.  Se realizaron una serie de pruebas de compresión para obtener el rendimiento estructural en muestras encamisadas, y luego compararlas con los cilindros de concreto no reforzado. Los tubos metálicos expandidos se fabricaron utilizando geometrías circulares con dos orientaciones de celda. Los resultados mostraron que la orientación de la malla mejora la resistencia a compresión de los especímenes.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. O. Lalaj, Y. Yardım, S. Yılmaz, “Recent perspectives for ferrocement”, Research on Engineering Structures and Materials, vol. 1, no. 1, pp. 11-23, 2015, doi: http://dx.doi.org/10.17515/resm2015.04st0123
  2. A. B. M. A. Kaish, M. Jamil, S. N. Raman, M. F. M. Zain, L. Nahar, “Ferrocement composites for strengthening of concrete columns: A review”, Construction and Building Materials, vol. 160, pp. 326 - 340, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2017.11.054
  3. D. Smith, C. Graciano, G. Martínez, “Expanded metal: A review of manufacturing, applications and structural performance,” Thin-Walled Structures, vol. 160, 107371, 2021, doi: https://doi.org/10.1016/j.tws.2020.107371
  4. U. Ebead, “Inexpensive strengthening technique for partially loaded reinforced concrete beams: Experimental study”, Journal of Materials in Civil Engineering, vol. 27, no. 10, 04015002, 2015, doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001249
  5. S. M. Mourad, M. J. Shannag, “Repair and strengthening of reinforced concrete square columns using ferrocement jackets”, Cement and concrete composites, vol. 34, no. 2, pp. 288-294, 2012, doi: https://doi.org/10.1016/j.conbuildmat.2016.12.100
  6. A. M. El-Kholy, S. F. Abd El-Rahman, M. M. El-Assaly, “Short and long RC columns with internal WWM reinforcement under concentric and eccentric compression”, International Journal of Concrete Structures and Materials, vol. 17, no. 1, 2023, doi: https://doi.org/10.1186/s40069-022-00566-0
  7. M. Bastami, A. Mousavi, M. Abbasnejadfard, “Evaluation of mechanical characteristics of high-strength reinforced concrete columns with hexagonal chicken wire mesh under cyclic loading”, International Journal of Concrete Structures Materials, vol. 16, 2022, doi: https://doi.org/10.1186/s40069-022-00520-0
  8. N. M. Apandi, C. K. Ma, C. L. Chin, A. Z. Awang, W. Wazien, “Stress strain response of pre-damaged concrete confined with recycled steel straps-A green confining material”, Journal of Building Engineering, vol. 75, 2023, doi: https://doi.org/10.1016/j.jobe.2023.106760
  9. A. B. Kaish, M. Jamil, S. N. Raman, M. F. M. Zain, “Axial behavior of ferrocement confined cylindrical concrete specimens with different sizes”, Construction and Building Materials, vol. 78, pp. 50-59, 2015, doi: http://dx.doi.org/10.1016/j.conbuildmat.2015.01.044
  10. A. M. El-Kholy, H. A. Dahish, “Improved confinement of reinforced concrete columns”, Ain Shams Engineering Journal, vol. 7, no. 2, pp. 717-728, 2016, doi: http://dx.doi.org/10.1016/j.asej.2015.06.002
  11. B. Shan, D. D. Lai, Y. Xiao, X. B. Luo, “Experimental research on concrete-filled RPC tubes under axial compression load”, Engineering Structures, vol. 155, pp. 358-370, 2018, doi: https://doi.org/10.1016/j.engstruct.2017.11.012
  12. A. M. El-Kholy, A. El-Mola, A. El-Aziz, A. Magdy, A. A. Shaheen, “Effectiveness of combined confinement with metal meshes and ties for preloaded and post-heated RC short columns”, Arabian Journal for Science and Engineering, vol. 43, no. 4, pp. 1875-1891, 2018, doi: https://doi.org/10.1007/s13369-017-2782-x
  13. A. K. Krishnapriya, N. Saravana-Kumar, A. Sree Rameswari, “Study on the compression behaviour of self-compacting concrete columns using expanded metal mesh as internal confinement”, International Research Journal of Engineering and Technology (IRJET), vol. 4, no. 03, pp. 2295-2300, 2017.
  14. I. G. Shaaban, Y. B. Shaheen, E. L. Elsayed, O. A. Kamal, P. A. Adesina, “Flexural characteristics of lightweight ferrocement beams with various types of core materials and mesh reinforcement”, Construction and Building Materials, vol. 171, pp. 802-816, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.03.167
  15. A. Leeanansaksiri, P. Panyakapo, A. Ruangrassamee, “Seismic capacity of masonry infilled RC frame strengthening with expanded metal ferrocement”, Engineering Structures, vol. 159, pp. 110-127, 2018, doi: https://doi.org/10.1016/j.engstruct.2017.12.034
  16. A. Furtado, H. Rodrigues, A. Arêde, H. Varum, “Experimental tests on strengthening strategies for masonry infill walls: A literature review”. Construction and Building Materials, vol. 263, 120520, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.120520
  17. R. P. Clarke, “Natural disaster mitigation using advanced ferrocement–Future research directions for improved building resilience”, Case Studies in Construction Materials, vol. 16, e00990, 2022, doi: https://doi.org/10.1016/j.cscm.2022.e00990
  18. A. Cumhur, A. Altundal, S. Aykac, B. Aykac, “Strengthening of hollow brick infill walls with expanded steel plates”, Earthquakes and Structures, vol. 11, no. 5, pp. 887–904, 2016.
  19. Y. Chonratana, V. Chatpattananan, “The seismic resistance analysis of frame structures and wall structures using ferrocement and expanded metal”, Applied Sciences, vol 13, no. 8, 4704, 2023, doi: https://doi.org/10.3390/app13084704
  20. T. A. El-Sayed, Y. B. Shaheen, M. M. AbouBakr, R. M. Abdelnaby, “Behavior of ferrocement water pipes as an alternative solution for steel water pipes”, Case Studies in Construction Materials, vol. 18, e01806, 2023, doi: https://doi.org/10.1016/j.cscm.2022.e01806
  21. T. A. El-Sayed, Y. B. Shaheen, F. H. Mohamed, R. M. Abdelnaby, “Performance of ferrocement composites circular tanks as a new approach for RC tanks”, Case Studies in Construction Materials, e02228, 2023, https://doi.org/10.1016/j.cscm.2023.e02228
  22. C. Codrean, M. Vodă, D. Buzdugan, V. A. Şerban, “Hierro gris amorfo para refuerzo de hormigón”, Revista UIS Ingenierías, vol. 19, no. 1, pp. 103–108, 2020, doi: https://doi.org/10.18273/revuin.v19n1-2020010
  23. M. A. Rojas-Manzano, I. F. Otálvaro-Calle, J. A. Pérez-Caicedo, H. M. Benavides, C. Ambriz-Fregoso, “Uso de las escorias de horno de arco eléctrico (EHAE) en la construcción – Estado del Arte”. Revista UIS Ingenierías, vol. 20, no. 2, pp. 53–64, 2021, doi: https://doi.org/10.18273/revuin.v20n2-2021005
  24. S. P. Muñoz-Pérez, A. L. Cabrera-Alcántara, C. C. Delgado-Bravo, P. A. Renilla-Lau, “Comportamiento físico-mecánico del hormigón adicionando residuos de acero: una revisión literaria”, Revista UIS Ingenierías, vol. 21, no. 1, pp. 57–72, 2022, doi: https://doi.org/10.18273/revuin.v21n1-2022005
  25. Expanded Metal Manufacturers Association (EMMA), Division of the National Association of Architectural Metal Manufacturers (NAAM) “EMMA 557-20: Standards for expanded metal”, 2020. https://www.naamm.org/store/product/9/standards-for-expanded-metal.
  26. C. Graciano, G. Martínez, D. Smith, “Experimental investigation on the axial collapse of expanded metal tubes”, Thin-Walled Structures, vol. 47, nos. 8-9, pp. 953-961, 2009, doi: https://doi.org/10.1016/j.tws.2009.02.002
  27. O. Giraldo-Bolívar, “Diseño de mezclas de hormigón: métodos empíricos y analíticos”, Departamento de Ingeniería Civil, Universidad Nacional de Colombia, 2004, https://repositorio.unal.edu.co/handle/unal/50123
  28. Conasfaltos S.A. Productos. https://conasfaltos.com/productos/
  29. O. Giraldo-Bolívar, “Comportamiento tensión deformación en cilindros estándar de concreto confinados con malla de metal expandido”, Trabajo fin de Maestría, Universidad Nacional de Colombia, Sede Medellín, 2020, https://repositorio.unal.edu.co/handle/unal/78445
  30. ASTM C 192/C 192M-05 “Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory”, Annual Book of ASTM Standards, American Society for Testing and Materials, 2005, pp. 1-8.
  31. ASTM C 39/C 39M-05, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens”, Annual Book of ASTM Standards, Vol. 04.02 Concrete and Aggregates, West Conshohocken, PA, United States, 2005, pp. 1-7.