Vol. 20 No. 1 (2021): Revista UIS Ingenierías
Articles

Released power in a vortex-antivortex pairs annihilation process

Cristian Aguirre-Tellez
Universidade Federal de Mato Groso
Miryam Rincón-Joya
Universidad Nacional de Colombia
José José Barba-Ortega
Universidad Nacional de Colombia

Published 2020-11-10

Keywords

  • Ginzburg-Landau,
  • mesoscopic,
  • magnetization,
  • vortices

How to Cite

Aguirre-Tellez, C., Rincón-Joya, M., & Barba-Ortega, J. J. (2020). Released power in a vortex-antivortex pairs annihilation process. Revista UIS Ingenierías, 20(1), 153–160. https://doi.org/10.18273/revuin.v20n1-2021014

Abstract

In this paper, we studied the power dissipation process of a Shubnikov vortex-antivortex pair in a mesoscopic superconducting square sample with a concentric square defect in presence of an oscillatory external magnetic field. The time-dependent Ginzburg-Landau equations and the diffusion equation were numerically solved. The significant result is that the thermal dissipation is associated with a sizeable relaxation of the superconducting electrons, so that the power released in this kind of process might become calculated as a function of the time. Also, we analyzed the effect that the Ginbzurg-Landau κ and deformation τ parameters have on the magnetization, dissipate power and super-electrons density.

Downloads

Download data is not yet available.

References

[1] M. Tinkham, “Effect of fluxoid quantization on transitions of superconducting films,” Physical Review, no. 129, p. 2413, 1963, doi: 10.1103/PhysRev.129.2413

[2] L. Komendova, M. V. Milosević, A. A. Shanenko, F. M. Peeters, “Different length scales for order parameters in two-gap superconductors: Extended Ginzburg-Landau theory,” Physical Review B, no. 84, p. 064522, 2011, doi: 10.1103/PhysRev.129.2413

[3] E. D. V. Nino, A. D. Lantada, J. Barba-Ortega, “Vortex matter in a superconducting square under 2D thermal gradient,” Journal of Low Temperature Physics, no. 195, p. 202, 2019, doi: 10.1007/s10909-019-02158-x

[4] C. A. Aguirre, H. Blas, J. Barba-Ortega, “Mesoscale vortex pinning landscapes in a two component superconductor,” Physica C, no. 554, p. 8, 2018, doi: 10.1016/j.physc.2018.08.010

[5] G. R. Berdiyorov, X. H. Chao, F. M. Peeters, H. B. Wang, V. V. Moshchalkov, B. Y. Zhu, “Magnetoresistance oscillations in superconducting strips: A Ginzburg-Landau study,” Physical Review B, no. 86, p. 224504, 2012, doi: 10.1103/PhysRevB.86.224504

[6] G. Berdiyorov, A. R. de C. Romaguera, M. V. Milosević, M. M. Doria, L. Covaci, F. M. Peeters, “Dynamic and static phases of vortices under an applied drive in a superconducting stripe with an array of weak links,” Europhysics Journal B, no. 85, p. 130, 2012, doi: 10.1140/epjb/e2012-30013-7

[7] G. R. Berdiyorov, M. V. Milosević, M. L. Latimer, Z. L. Xiao, W. K. Kwok, F. M. Peeters, “Large magnetoresistance oscillations in mesoscopic superconductors due to currentexcited moving vortices,” Physical Review Letters, no. 109, p. 057004, 2012, doi: 10.1103/PhysRevLett.109.057004

[8] E. Sardella, P. N. L. Filho, C. C. Silva, L. R. E. Cabral, W. A. Ortiz, “Vortex-antivortex annihilation dynamics in a square mesoscopic superconducting cylinder,” Physical Review B, vol. 80, p. 012506, 2009, doi: 10.1103/PhysRevB.80.012506

[9] R. Zadorosny, E. C. S. Duarte, E. Sardella, W. A. Ortiz, “Vortex-antivortex annihilation in mesoscopic superconductors with a central pinning center,” Physica C, vol. 503, p. 94, 2014, doi: 10.1016/j.physc.2014.04.007

[10] A. Gomes, E. M. Gonzalez, D. A. Gilbert, M. V. Milosević, L. Kai, J. L. Vicent, “Probing the dynamic response of antivortex, interstitial and trapped vortex lattices on magnetic periodic pinning potentials,” Superconductor Science and Technology, no. 26, p. 085018, 2013, doi: 10.1088/0953-2048/26/8/085018

[11] A. V. Kapra, V. R. Misko, D. Y. Vodolazov, F. M. Peeters, “The guidance of vortex antivortex pairs by in-plane magnetic dipoles in a superconducting finite size film,” Superconductor Science and Technology, no. 24, p. 024014, 2011, doi: 10.1088/0953-2048/24/2/024014

[12] V. N. Gladilin, J. Tempere, J. T. Devreese, V. V. Moshchalkov, “Stable antiferromagnetic vortex lattice imprinted into a type-II superconductor,” New Journal of Physics, no. 14, p. 103021, 2012,

[13] I. Shapiro, E. Pechenik, B. Y. Shapiro, “Recovery of superconductivity in a quenched mesoscopic domain,” Physical Review B, vol. 63, p. 184520, 2001, doi: 10.1103/PhysRevB.63.184520

[14] M. Ghinovker, B. Y. Shapiro, I. Shapiro, “Spontaneous magnetic-flux generation in superconducting ring,” Physical Review B, vol. 53, p. 240, 2001, doi: 10.1209/epl/i2001-00143-x

[15] D. R. Gulevich, F. V. Kusmartsev, “Fluxon collider for multiple fluxon antifluxon collisions,” New Journal of Physics, no. 9, p. 59, 2007, doi: 10.1088/1367-2630/9/3/059

[16] E. C. S. Duarte, E. Sardella, W. A. Ortiz, R. Zadorosny, “Dynamics and heat diffusion of abrikosovs vortex antivortex pairs during an annihilation process,” Journal of Physics: Condensed Matter, no. 29, p. 40, 2017.

[17] J. Barba-Ortega, E. Sardella, J. A. Aguiar, “Vortex antivortex dynamics in a mesoscopic superconducting prism with a centered antidot,” Journal of Superconductivity and Novel Magnetism, no. 24, p. 97, 2011, doi: 10.1007/s10948-010-0904-8

[18] A. Schimd, “A time dependent Ginzburg - Landau equation and its application to the problem of resistivity in the mixed state,” Physik der Kondensierten Materie, no. 5, p. 302, 1966, doi: 10.1007/BF02422669

[19] I. Petkovic, A. Lollo, L. I. Glazman, J. G. E. Harris, “Deterministic phase slips in mesoscopic superconducting rings,” Nature Communicatios, no. 7, p. 13551, 2016, doi: 10.1038/ncomms13551

[20] C. A. Aguirre, Q. Martins, J. Barba-Ortega, “Desarrollo analítico de las ecuaciones Ginzburg - Landau para películas delgadas superconductoras en presencia de corrientes,” Revista UIS Ingenierías, no. 18, p. 213, 2019, doi: 10.18273/revuin.v18n2-2019020

[21] J. Barba-Ortega, E. Sardella, J. A. Aguiar, “Superconducting properties of a parallelepiped mesoscopic superconductor: A comparative study between the 2D and 3D ginzburglandau models,” Physics Letters A, no. 379, p. 732, 2015, doi: 10.1016/j.physleta.2014.12.030

[22] C. A. Aguirre, M. R. Joya, J. Barba-Ortega, “Dimer structure as topological pinning center in a superconducting sample,” Revista UIS Ingenierías, no. 19, p. 119, 2020, doi: 10.18273/revuin.v19n1-2020011

[23] W. D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M. Palumbo, V. M. Vinokur, “Numerical simulation of vortex dynamics in type-II superconductors,” J. Comput. Phys., vol. 123, p. 254, 1996, doi: 10.1006/jcph.1996.0022

[24] G. C. Buscaglia, C. Bolech, A. López, Connectivity and Superconductivity. Springer, Berlin, 2000.

[25] L. Kramer, R. J. Watts-Tobin, “Theory of dissipative current-carrying states in superconducting filaments,” Phisical Review Letteres, no. 40, p. 1041, 1978, doi: 10.1103/PhysRevLett.40.1041