Parameter estimation in singe-phase transformers employing voltage and current measures
Published 2020-09-21
Keywords
- parametric estimation,
- mathematical optimization,
- nonlinear programming,
- distribution transformer,
- general algebraic modeling system
How to Cite
Copyright (c) 2020 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
In this article a methodology for estimating electrical parameters in distribution transformer is presented by considering voltage and current measures through the formulation of a nonlinear programming (NLP). This mathematical optimization model is developed by applying the Kirchhoff’s laws to the equivalent electric circuit of the transformer. To solve the NLP model the general algebraic modeling system widely known as GAMS is used. The proposed methodology is developed in a tutorial sense by presenting a numerical example that corresponds to a single-phase transformer with 20 kVA and a transformation ratio about 8000/240 V. Numerical results show that the parametric estimation in the transformers with the proposed NLP model represents the electrical behavior of these devices adequately considering different load scenarios. All the simulations were carried-out in GAMS version 25.1.3 licensed by Universidad Tecnológica de Bolívar.
Downloads
References
[2] R. Jiménez, T. Serebrisky, J. Mercado, “Sizing Electricity Losses in Transmission and Distribution Systems in Latin America and the Caribbean,” Inter-American Development Bank, Tech. Rep., 2017. [En línea]. Disponible en: https://publications.iadb.org/publications/english/document/Power-Lost-Sizing-Electricity-Losses-in-Transmission-and-Distribution-Systems-in-Latin-America-and-the-Caribbean.pdf
[3] “Evolución sectorial de la distribución y comercialización de energía eléctrica en Colombia 2010-2018,” ASOCODIS, Tech. Rep., 2019. [En línea]. Disponible en: http://www.asocodis.org.co/index.php?option=com_archivos&view=archivos&id=64&Itemid=11
[4] S. Chapman, Electric Machinery Fundamentals, ser. McGrawHill Series in Electrical and Computer Engineering. McGrawHill Companies, Incorporated, 2005.
[5] H. Illias, K. Mou, A. Bakar, “Estimation of transformer parameters from nameplate data by imperialist competitive and gravitational search algorithms,” Swarm Evol. Comput., vol. 36, pp. 18–26, oct 2017, doi: 10.1109/ACCESS.2020.2978398
[6] R. Patsch, J. Menzel, “Ageing and degradation of power transformers: how to interpret Return Voltage Measurements,” in 2008 International Symposium on Electrical Insulating Materials (ISEIM 2008), pp. 179-182, 2008, doi: 10.1109/ISEIM.2008.4664447
[7] M. Ćalasan, D. Mujičić, V. Rubežić, M. Radulović “Estimation of Equivalent Circuit Parameters of Single-Phase Transformer by Using Chaotic Optimization Approach,” Energies, vol. 12, no. 9, p. 1697, 2019, doi: 10.3390/en12091697
[8] H. Yiyan, W. Maosong, “The transformer short-circuit test and the high power laboratory in China the past, present, and future,” IEEE Electr. Insul. Mag., vol. 20, no. 1, pp. 14–19, 2004, doi: 10.1109/MEI.2004.1266361
[9] M. Singh, A. Prakasha, K. S. Meera, “Impact of Online Testing of Distribution Transformers- A Case Study,” in 2019 International Conference on High Voltage Engineering and Technology (ICHVET). IEEE, pp. 1-6, 2019, doi: 10.1109/ICHVET.2019.8724291
[10] O. D. Montoya, R. A. Hincapié, M. Granada, “Nuevo enfoque para la localización óptima de reconectadores en sistemas de distribución considerando la calidad del servicio y los costos de inversión,” Ingeniare, vol. 24, no. 1, pp. 55–69, 2016.
[11] R. Kazemi, S. Jazebi, D. Deswal, F. de León, “Estimation of Design Parameters of Single-Phase Distribution Transformers From Terminal Measurements,” IEEE Trans. Power Del., vol. 32, no. 4, pp. 2031–2039, 2017, doi: 10.1109/TPWRD.2016.2621753
[12] T. Dao, H. A. Halim, B. T. Phung, “A comparative study of power loss caused by voltage harmonics in aged transformer,” in 2016 International Conference on Condition Monitoring and Diagnosis (CMD), 2016, pp. 461–464, doi: 10.1109/CMD.2016.7757860
[13] R. Krishan, A. K. Mishra, B. S. Rajpurohit, “Real-time parameter estimation of single-phase transformer,” in 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, 2016, pp. 1–6, doi: 10.1109/POWERI.2016.8077315
[14] Mercados-Energéticos-Consultores, “Revisión de las metodologías de remuneración de las actividades de transmisión y distribución de energía eléctrica,” CREG, Tech. Rep., 2014.
[15] S. Padma, S. Subramanian, “Parameter Estimation of Single Phase Core Type Transformer Using Bacterial Foraging Algorithm,” Engineering, vol. 02, no. 11, pp. 917–925, 2010.
[16] M. I. Mossad, M. Azab, A. Abu-Siada, “Transformer Parameters Estimation From Nameplate Data Using Evolutionary Programming Techniques,” IEEE Trans. Power Del., vol. 29, no. 5, pp. 2118–2123, 2014, doi: 10.1109/TPWRD.2014.2311153
[17] O. D. Montoya, “Solving a Classical Optimization ProblemUsing GAMS Optimizer Package: Economic Dispatch ProblemImplementation,” Ingeniería y Ciencia, vol. 13, no. 26, pp. 39–63, 2017, doi: 10.17230/ingciencia.13.26.2
[18] O. D. Montoya, L. F. Grisales-Noreña, W. Gil-González, G. Alcalá, Q. Hernandez-Escobedo, “Optimal Location and Sizing of PV Sources in DC Networks for Minimizing Greenhouse Emissions in Diesel Generators,” Symmetry, vol. 12, no. 2, p. 322, feb 2020, doi: 10.3390/sym12020322
[19] O. D. Montoya, W. Gil-González, L. Grisales-Noreña, “An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach,” Ain Shams Eng. J., nov 2019, doi: 10.1016/j.asej.2019.08.011
[20] O. D. Montoya, W. Gil-González, L. Grisales-Noreña, C. Orozco-Henao, F. Serra, “Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models,” Energies, vol. 12, no. 23, p. 4494, 2019, doi: 10.3390/en12234494
[21] W. Gil-González, O. D. Montoya, L. F. Grisales-Noreña, F. Cruz-Peragón, G. Alcalá, “Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization,” Energies, vol. 13, no. 7, p. 1703, 2020, doi: 10.3390/en13071703
[22] O. D. Montoya, W. Gil-González, E. Rivas-Trujillo, “Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids,” Energies, vol. 13, no. 9, p. 2289, 2020, doi: 10.3390/en13092289
[23] L. Tartibu, B. Sun, M. Kaunda, “Multi-objective optimization of the stack of a thermoacoustic engine using GAMS,” Appl. Soft Comput., vol. 28, pp. 30–43, 2015, doi: 10.1016/j.asoc.2014.11.055
[24] A. Soroudi, Power System Optimization Modeling in GAMS. Springer International Publishing, 2017, doi: 10.1007/978-3-319-62350-4
[25] A. Naghiloo, M. Abbaspour, B. Mohammadi-Ivatloo, K. Bakhtari, “GAMS based approach for optimal design and sizing of a pressure retarded osmosis power plant in Bahmanshir river of Iran,” Renewable Sustainable Energy Rev., vol. 52, pp. 1559–1565, dec 2015, doi: 10.1016/j.rser.2015.08.018