Vol. 21 No. 1 (2022): Revista UIS Ingenierías
Articles

A comparative analysis of resistance models for austenitic stainless steel girders subjected to concentrated loads

Carlos Alberto Graciano-Gallego
Universidad Nacional de Colombia
Nelson Loaiza
Universidad de Medellín
Euro Casanova
Universidad del Bío-Bío

Published 2021-11-23

Keywords

  • ultimate resistance; finite element; nonlinear analysis; stainless steel; patch loading,
  • ultimate resistance,
  • finite element,
  • nonlinear analysis,
  • stainless steel,
  • patch loading
  • ...More
    Less

How to Cite

Graciano-Gallego, C. A., Loaiza , N. ., & Casanova , E. . (2021). A comparative analysis of resistance models for austenitic stainless steel girders subjected to concentrated loads. Revista UIS Ingenierías, 21(1), 95–102. https://doi.org/10.18273/revuin.v21n1-2022008

Abstract

The increasing use of stainless steel in construction has led to the need of developing resistance models for structural elements made of this material. Unlike carbon steels, stainless steel alloys exhibit stress-strain curves with a pronounced strain hardening capacity and reasonable ductility that should be considered in the design. This difference in behavior makes the formulations used for carbon steel conservative when designing with stainless steel. Therefore, this paper presents a comparative analysis of resistance models for slender austenitic stainless-steel beams subject to concentrated loads. First, the failure mechanisms of stainless-steel beams are presented using a nonlinear finite element model. From this validated numerical model, a database obtained from a parametric analysis that covers a wide range of geometries is presented. Subsequently, this database is used to perform a comparison between various resistance models available in the literature. These models correspond to both international design codes and models obtained through machine learning. Finally, the numerical results show considerable improvement in the predicted ultimate resistances for slender stainless steel plate girders subjected to patch loading.

Downloads

Download data is not yet available.

References

  1. Specification for Structural Stainless-Steel Buildings, American Institute of Steel Construction, AISC 370, 2020.
  2. Eurocode 3: Design of Steel Structures - Part 1–4: General Rules – Supplementary Rules for Stainless Steels, European Committee for Standardization, CEN ENV 1993-1-4, 2006.
  3. Eurocode 9: Design of Aluminium Structures – Part 1–1: General structural rules, European Committee for Standardization, CEN EN 1999-1-1:2007.
  4. Specification for structural steel buildings, American Institute of Steel Construction, EUA; ANSI/AISC 360-16, 2016
  5. Eurocode 3: Design of steel structures – Part 1–5: Plated structural elements, European Committee for Standardization, CEN ENV 1993-1-5, 2006.
  6. S. Afshan, L. Gardner, “The continuous strength method for structural stainless-steel design,” Thin Walled Struct, vol. 68, pp. 42-49, 2013, doi: https://doi.org/10.1016/j.tws.2013.02.011.
  7. S. Ahmed, M. Ashraf, M. Anwar-Us-Saadat, “The continuous strength method for slender stainless-steel cross-sections,” Thin-Walled Struct, vol. 107, pp. 362-376, 2016, doi: https://doi.org/10.1016/j.tws.2016.06.023.
  8. O. Zhao, S. Afshan, L. Gardner, “Structural response and continuous strength method design of slender stainless-steel cross-sections,” Eng Struct, vol. 140, pp. 14-25, 2017, doi: https://doi.org/10.1016/j.engstruct.2017.02.044.
  9. G. D. Matteis, L. A. Moen, M. Langseth, R. Landolfo, O. S. Hopperstad, F. M. Mazzolani, “Cross-sectional classification for aluminum beams—parametric study,” J Struct Eng ASCE, vol. 127, no. 3, pp. 271-279, 2001, doi: https://doi.org/10.1061/(ASCE)0733-9445(2001)127:3(271).
  10. M. N. Su, B. Young, L. Gardner, “The continuous strength method for the design of aluminium alloy structural elements,” Eng Struct, vol. 122, pp. 338-348, 2016, doi: https://doi.org/10.1016/j.engstruct.2016.04.040.
  11. M. N. Su, B. Young, L. Gardner, “Classification of aluminium alloy cross-sections,” Eng Struct, vol. 141, pp. 29-40, 2017, doi: https://doi.org/10.1016/j.engstruct.2017.03.007.
  12. F. M. Mazzolani, Aluminium Alloy Structures, 2nd Ed., London, UK: Chapman & Hall, 1995.
  13. O. Lagerqvist, B. Johansson, “Resistance of I-girders to concentrated loads,” J Constr Steel Res, vol. 39, no. 2, pp. 87-119, 1996, doi: https://doi.org/10.1016/S0143-974X(96)00023-5.
  14. E. Unosson, “Patch loading of stainless steel girders: Experiments and finite analyses,” licentiate thesis, Luleå University of Technology, 2003.
  15. G. B. dos Santos, L. Gardner, M. Kucukler, “Experimental and numerical study of stainless steel I-sections under concentrated internal one-flange and internal two-flange loading,” Eng Struct, vol. 175, pp. 355-370, 2018, doi: https://doi.org/10.1016/j.engstruct.2018.08.015.
  16. C. Graciano, N. Loaiza, E. Casanova, “Resistance of slender austenitic stainless steel I-girders subjected to patch loading,” Structures, vol. 20, pp. 924-934, 2019, doi: https://doi.org/10.1016/j.istruc.2019.07.008.
  17. G. B. dos Santos, L. Gardner, “Design recommendations for stainless steel I-sections under concentrated transverse loading,” Eng Struct, vol. 204, 109810, 2020, doi: https://doi.org/10.1016/j.engstruct.2019.109810.
  18. A. Ayestarán, C. Graciano, O. A. González-Estrada, “Resistencia de vigas esbeltas de acero inoxidable bajo cargas concentradas mediante elementos finitos,” Rev UIS Ing, vol. 16, no. 2, pp. 61-70, 2017, doi: https://doi.org/10.18273/revuin.v16n2-2017006.
  19. Eurocode 3: Design of Steel Structures - Part 1–6: Strength and Stability of Shell Structures, European Committee for Standardization, EN 1993-1-6, 2007.
  20. Eurocode 3: Design of Steel Structures - Part 1–1: General Rules and Rules for Buildings, European Committee for Standardization, EN 1993-1-1, 2005.
  21. Elements Reference, ANSYS Release 19R2, 2019.
  22. E. Riks, “An incremental approach to the solution of snapping and buckling problems,” Int J Solids Struct vol. 15, no. 7, pp. 529-551, 1979, doi: https://doi.org/10.1016/0020-7683(79)90081-7.
  23. C. Müller, “Zum Nachweis ebener Tragwerke aus Stahl gegen seitliches Ausweichen,” doctoral thesis, RWTH Aachen, Lehrstuhl für Stahlbau, Shaker Verlag, no. 47, 2003.
  24. Eurocode – Basis of structural design, EN BS 1990: 2002.
  25. C. Graciano, A. E. Kurtoglu, E. Casanova, “Machine learning approach for predicting the patch load resistance of austenitic steel girders,” Structures, vol. 30, pp. 198-205, 2021, doi: https://doi.org/10.1016/j.istruc.2021.01.012.