Vol. 22 No. 4 (2023): Revista UIS Ingenierías
Articles

Application of the SSA to the Optimal Phase-Swapping Problem in Three-Phase Asymmetric Networks

Antonny Santiago Vargas-Beltrán
Universidad Distrital Francisco José de Caldas
Oscar Mauricio Angarita-Santofimio
Universidad Distrital Francisco José de Caldas
Oscar Danilo Montoya-Giraldo
Universidad Distrital Francisco José de Caldas

Published 2023-10-31

Keywords

  • Optimal phase-balancing,
  • Grid power losses,
  • Salp swarm algorithm,
  • Three-phase power flow,
  • Asymmetric distribution systems

How to Cite

Vargas-Beltrán, A. S., Angarita-Santofimio, O. M., & Montoya-Giraldo, O. D. (2023). Application of the SSA to the Optimal Phase-Swapping Problem in Three-Phase Asymmetric Networks. Revista UIS Ingenierías, 22(4), 31–50. https://doi.org/10.18273/revuin.v22n4-2023004

Abstract

This research addresses the optimal phase-balancing problem by applying a master-slave optimization methodology. The master stage defines the load connections per node using a discrete codification, while the slave stage evaluates each load configuration provided by the master stage via a three-phase power flow. For the master stage, the salp swarm algorithm (SSA) was selected, which is an efficient bio-inspired technique to deal with continuous and discrete nonlinear optimization problems. The slave stage employed the matricial backward/forward power flow method for three-phase asymmetric networks. Numerical simulations in IEEE test feeders composed of 8, 25, and 37 nodes confirm the effectiveness of the SSA approach in finding efficient solutions regarding the expected grid power losses after optimal load phase-swapping. Numerical comparisons with the vortex search algorithm, the Chu & Beasley genetic algorithm, and the crow search algorithm demonstrate the effectiveness of the proposed methodology in dealing with the studied problem. All numerical validations were carried out in the MATLAB programming environment.

Downloads

Download data is not yet available.

References

  1. W. A. Ñustes-Cuellar and S. R. Rivera-Rodriguez, “Colombia: Territorio de inversión en fuentes no convencionales de energía renovable para la generación eléctrica,” in Ingeniería Investigación y Desarrollo, Jan. 2017, pp. 37–48, doi: https://doi.org/10.19053/1900771X.v17.n1.2017.5954
  2. L. Berrio, C. Zuluaga, “Concepts, standards and communication technologies in smart grid,” in 2012 IEEE 4th Colombian Workshop on Circuits and Systems (CWCAS), IEEE, Nov. 2012, pp. 1–6, doi: https://doi.org/10.1109/CWCAS.2012.6404056
  3. L. F. Grisales Noreña, B. J. Restrepo Cuestas, F. E. Jaramillo Ramirez, “Ubicación y dimensionamiento de generación distribuida: Una revisión,” Cienc. e Ing. Neogranadina, vol. 27, no. 2, pp. 157–176, Aug. 2017, doi: https://doi.org/10.18359/rcin.2344
  4. F. M. Aboshady, D. W. P. Thomas, M. Sumner, “A Wideband Single End Fault Location Scheme for Active Untransposed Distribution Systems,” IEEE Trans. Smart Grid, vol. 11, no. 3, pp. 2115–2124, 2020, doi: https://doi.org/10.1109/TSG.2019.2947870
  5. S. D. Saldarriaga-Zuluaga, J. M. Lopez-Lezama, N. Munoz-Galeano, “Protection Coordination in Microgrids: Current Weaknesses, Available Solutions and Future Challenges,” IEEE Lat. Am. Trans., vol. 18, no. 10, pp. 1715–1723, Oct. 2020, doi: https://doi.org/10.1109/TLA.2020.9387642
  6. A. Paz-Rodríguez, J. F. Castro-Ordoñez, O. D. Montoya, D. A. Giral-Ramírez, “Optimal Integration of Photovoltaic Sources in Distribution Networks for Daily Energy Losses Minimization Using the Vortex Search Algorithm,” Appl. Sci., vol. 11, no. 10, p. 4418, May 2021, doi: https://doi.org/10.3390/app11104418
  7. S. Sultana, P. K. Roy, “Krill herd algorithm for optimal location of distributed generator in radial distribution system,” Appl. Soft Comput., vol. 40, pp. 391–404, Mar. 2016, doi: https://doi.org/10.1016/j.asoc.2015.11.036
  8. S. Sultana, P. K. Roy, “Krill herd algorithm for optimal location of distributed generator in radial distribution system,” Appl. Soft Comput., vol. 40, no. 43, pp. 391–404, Mar. 2016, doi: https://doi.org/10.1016/j.asoc.2015.11.036
  9. Z. Ullah, M. R. Elkadeem, S. Wang, J. Radosavljevic, “A Novel PSOS-CGSA Method for State Estimation in Unbalanced DG-Integrated Distribution Systems,” IEEE Access, vol. 8, pp. 113219–113229, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3003521
  10. F. H. M. Rafi, M. J. Hossain, M. S. Rahman, S. Taghizadeh, “An overview of unbalance compensation techniques using power electronic converters for active distribution systems with renewable generation,” Renew. Sustain. Energy Rev., vol. 125, p. 109812, 2020, doi: https://doi.org/10.1016/j.rser.2020.109812
  11. S. Sun, B. Liang, M. Dong, J. A. Taylor, “Phase Balancing Using Energy Storage <?Pub _newline ?> in Power Grids Under Uncertainty,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3891–3903, Sep. 2016, doi: https://doi.org/10.1109/TPWRS.2015.2492359
  12. O. D. Montoya, L. F. Grisales-Noreña, E. Rivas-Trujillo, “Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks,” Computers, vol. 10, no. 9, p. 109, 2021, doi: https://doi.org/10.3390/computers10090109
  13. C. A. Duarte Gualdrón, J. Bautista, G. Ordóñez, J. Barrero Perez, G. E. González Sua, “Medición de las magnitudes de potencia y energía eléctrica bajo las nuevas condiciones de los sistemas eléctricos,” Rev. UIS Ing, vol. 8, no. 1, pp. 9–19, 2009.
  14. U. D. Lubo, “Cargos de respaldo por uso de la red eléctrica en el costo unitario de energía distribuida: desafíos y oportunidades para la planificación,” Rev. UIS Ing., vol. 18, no. 3, pp. 67–74, Apr. 2019, doi: https://doi.org/10.18273/revuin.v18n3-2019007
  15. O. D. Montoya, A. Molina-Cabrera, L. F. Grisales-Noreña, R. A. Hincapié, M. Granada, “Improved Genetic Algorithm for Phase-Balancing in Three-Phase Distribution Networks: A Master-Slave Optimization Approach,” Computation, vol. 9, no. 6, p. 67, 2021, doi: https://doi.org/10.3390/computation9060067
  16. G. Carrillo, J. F. Petit Suárez, “Reducción de pérdidas de potencia activa y mejoramiento de la calidad de la onda de tensión en sistemas de distribución,” Rev. UIS Ing, vol. 1, no. 1, pp. 59–66, 2002.
  17. J. Zhu, G. Bilbro, Mo-Yuen Chow, “Phase balancing using simulated annealing,” IEEE Trans. Power Syst., vol. 14, no. 4, pp. 1508–1513, 1999, doi: https://doi.org/10.1109/59.801943
  18. M. A. Rios, J. C. Castano, A. Garces, and A. Molina-Cabrera, “Phase Balancing in Power Distribution Systems: A heuristic approach based on group-theory,” in 2019 IEEE Milan PowerTech, IEEE, Jun. 2019, pp. 1–6. doi: https://doi.org/10.1109/PTC.2019.8810723
  19. H. Khodr, I. Zerpa, P. De Oliveira-de Jesu’s, M. Matos, “Optimal Phase Balancing in Distribution System Using Mixed-Integer Linear Programming,” in 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, IEEE, 2006, pp. 1–5. doi: https://doi.org/10.1109/TDCLA.2006.311368
  20. Bo Yang, Yunping Chen, Zunlian Zhao, Qiye Han, “A Master-Slave Particle Swarm Optimization Algorithm for Solving Constrained Optimization Problems,” in 2006 6th World Congress on Intelligent Control and Automation, IEEE, 2006, pp. 3208–3212. doi: https://doi.org/10.1109/WCICA.2006.1712959
  21. J. Zhu, C. Mo-Yuen, F. Zhang, “Phase balancing using mixed-integer programming [distribution feeders],” IEEE Trans. Power Syst., vol. 13, no. 4, pp. 1487–1492, 1998, doi: https://doi.org/10.1109/59.736295
  22. A. Correa, “Balance de fases multiobjetivo en sistemas de distribución,” Sci. Tech. Año XIII, vol. 37, no. 37, pp. 55–60, 2007.
  23. A. Garcés Ruiz, M. Granada Echeverri, R. A. Gallego-R., “Balance de fases usando colonia de hormigas,” Ing. Y Compet., vol. 7, no. 2, pp. 43–52, 2011, doi: https://doi.org/10.25100/iyc.v7i2.2517
  24. A. G. Ruiz, J. C. G. Manso, R. A. Gallego Rendón, “Solución al problema de balance de fases y reconfiguración de alimentadores primarios bajo un modelamiento trifásico usando Simulated Annealing,” Sci. Tech. no. 30, pp. 37–42, 2006.
  25. F. Postigo, et al. “Phase-selection algorithms to minimize cost and imbalance in U.S. synthetic distribution systems” International Journal of Electrical Power & Energy Systems, https://doi.org/10.1016/j.ijepes.2020.106042
  26. G. A. Schweickardt G. Wiman, “Metaheurística Fepso multiobjetivo. Una aplicación para el análisis del balance de cargas en redes de distribución de baja tensión,” Energética, no. 41, pp. 33–48, 2008.
  27. M. Sathiskumar, A. Nirmal kumar, L. Lakshminarasimman, S. Thiruvenkadam, “A self adaptive hybrid differential evolution algorithm for phase balancing of unbalanced distribution system,” Int. J. Electr. Power Energy Syst., vol. 42, no. 1, pp. 91–97, Nov. 2012, doi: https://doi.org/10.1016/j.ijepes.2012.03.029
  28. R. Hooshmand, S. H. Soltani, “Simultaneous optimization of phase balancing and reconfiguration in distribution networks using BF–NM algorithm,” Int. J. Electr. Power Energy Syst., vol. 41, no. 1, pp. 76–86, Oct. 2012, doi: https://doi.org/10.1016/j.ijepes.2012.03.010
  29. P. Samal, S. Ganguly, S. Mohanty, “Planning of unbalanced radial distribution systems using differential evolution algorithm,” Energy Syst., vol. 8, no. 2, pp. 389–410, 2017, doi: https://doi.org/10.1007/s12667-016-0202-z
  30. I. P. Abril, “Multi-objective optimization of the balancing of phases in primary distribution circuits,” Int. J. Electr. Power Energy Syst., vol. 82, pp. 420–428, 2016, doi: https://doi.org/10.1016/j.ijepes.2016.03.047
  31. B. Cortés-Caicedo, L. S. Avellaneda-Gómez, O. D. Montoya, L. Alvarado-Barrios, H. R. Chamorro, “Application of the Vortex Search Algorithm to the Phase-Balancing Problem in Distribution Systems,” Energies, vol. 14, no. 5, p. 1282, 2021, doi: https://doi.org/10.3390/en14051282
  32. H. Faris, S. Mirjalili, I. Aljarah, M. Mafarja, A. A. Heidari, “Salp Swarm Algorithm: Theory, Literature Review, and Application in Extreme Learning Machines,” in Nature-Inspired Optimizers, in Studies in Computational Intelligence. Cham: Springer International Publishing, 2020, pp. 185–199. doi: https://doi.org/10.1007/978-3-030-12127-3_11
  33. B. Cortés-Caicedo, L. S. Avellaneda-Gómez, O. D. Montoya, L. Alvarado-Barrios, C. Álvarez-Arroyo, “An Improved Crow Search Algorithm Applied to the Phase Swapping Problem in Asymmetric Distribution Systems,” Symmetry (Basel)., vol. 13, no. 8, p. 1329, Jul. 2021, doi: https://doi.org/10.3390/sym13081329
  34. V. C. Strezoski, L. D. Trpezanovski, “Three-phase asymmetrical load-flow,” Int. J. Electr. Power Energy Syst., vol. 22, no. 7, pp. 511–520, Oct. 2000, doi: https://doi.org/10.1016/S0142-0615(00)00012-0
  35. M. Granada Echeverri, R. A. Gallego Rendón, and J. M. López Lezama, “Planeamiento Optimo de Balance de Fases para Reducción de Perdidas en Sistemas de Distribución usando un Algoritmo Genético Especializado,” Ing. y Cienc , vol. 8, no. 15, pp. 121–140, 2012.
  36. L. Abualigah, M. Shehab, M. Alshinwan, H. Alabool, “Salp swarm algorithm: a comprehensive survey,” Neural Comput. Appl., vol. 32, no. 15, pp. 11195–11215, Aug. 2020, doi: https://doi.org/10.1007/s00521-019-04629-4
  37. S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, “Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems,” Adv. Eng. Softw., vol. 114, pp. 163–191, Dec. 2017, doi: https://doi.org/10.1016/j.advengsoft.2017.07.002
  38. L. S. Avellaneda-Gómez and O. D. Montoya-Giraldo, “Aplicación del algoritmo de optimización por enjambre de salpas para la estimación de parámetros en transformadores monofásicos empleando medidas de tensión y corriente,” Rev. UIS Ing., vol. 21, no. 2, pp. 131–146, May 2022, doi: https://doi.org/10.18273/revuin.v21n2-2022011
  39. S. Ben Chaabane, A. Belazi, S. Kharbech, A. Bouallegue, L. Clavier, “Improved Salp Swarm Optimization Algorithm: Application in Feature Weighting for Blind Modulation Identification,” Electronics, vol. 10, no. 16, p. 2002, 2021, doi: https://doi.org/10.3390/electronics10162002
  40. R. A. Ibrahim, A. A. Ewees, D. Oliva, M. Abd Elaziz, S. Lu, “Improved salp swarm algorithm based on particle swarm optimization for feature selection,” J. Ambient Intell. Humaniz. Comput., vol. 10, no. 8, pp. 3155–3169, Aug. 2019, doi: https://doi.org/10.1007/s12652-018-1031-9
  41. H. Faris et al., “An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems,” Knowledge-Based Syst., vol. 154, pp. 43–67, Aug. 2018, doi: https://doi.org/10.1016/j.knosys.2018.05.009
  42. H. Zhang et al., “A multi-strategy enhanced salp swarm algorithm for global optimization,” Eng. Comput., vol. 38, no. 2, pp. 1177–1203, Apr. 2022, doi: https://doi.org/10.1007/s00366-020-01099-4
  43. D. Shirmohammadi, H. W. Hong, A. Semlyen, G. X. Luo, “A compensation-based power flow method for weakly meshed distribution and transmission networks,” IEEE Trans. Power Syst., vol. 3, no. 2, pp. 753–762, May 1988, doi: https://doi.org/10.1109/59.192932
  44. T. Shen, Y. Li, J. Xiang, “A Graph-Based Power Flow Method for Balanced Distribution Systems,” Energies, vol. 11, no. 3, p. 511, Feb. 2018, doi: https://doi.org/10.3390/en11030511
  45. R. P. Broadwater, A. Chandrasekaran, C. T. Huddleston, A. H. Khan, “Power flow analysis of unbalanced multiphase radial distribution systems,” Electr. Power Syst. Res., vol. 14, no. 1, pp. 23–33, Feb. 1988, doi: 10.1016/0378-7796(88)90044-2.
  46. T. Ramana, V. Ganesh, S. Sivanagaraju, “Distributed Generator Placement And Sizing in Unbalanced Radial Distribution System,” Cogener. Distrib. Gener. J., vol. 25, no. 1, pp. 52–71, Jan. 2010, doi: https://doi.org/10.1080/15453661009709862
  47. W. H. Kersting, “Radial distribution test feeders,” IEEE Trans. Power Syst., vol. 6, no. 3, pp. 975–985, 1991, doi: https://doi.org/10.1109/59.119237