Vol. 22 No. 4 (2023): Revista UIS Ingenierías
Articles

Structural analysis of a slotted flap redesigned with composite materia

Sergio Andrés Ardila-Parra
Universita Degli Studi Di Salerno
José Barba-Ortega
Universidad Nacional de Colombia
Octavio Andrés González-Estrada
Universidad Industrial de Santander

Published 2023-09-22

Keywords

  • Structural Analysis,
  • Finite Element Method,
  • Composites,
  • Aircraft

How to Cite

Ardila-Parra , S. A., Barba-Ortega, J. ., & González-Estrada, O. A. (2023). Structural analysis of a slotted flap redesigned with composite materia. Revista UIS Ingenierías, 22(4), 11–18. https://doi.org/10.18273/revuin.v22n4-2023002

Abstract

This research focuses on assessing the mechanical strength feasibility of utilizing composite materials in the design of slotted flaps as a replacement for isotropic materials. Modern computational capabilities and software tools enable the analysis of both anisotropic and isotropic materials. However, it is imperative to consider several factors to ensure that the computational model accurately mirrors real-world scenarios. In the context of composite materials, this necessitates the comprehensive integration of anisotropic properties such as Young's modulus in different orientations, Poisson's coefficients, fiber orientation, and ply stacking. Additionally, precise delineation of each boundary condition and exploration of various simulation conditions are vital to prevent biases. To validate the developed models, they are rigorously compared with laboratory tests, establishing a robust basis for the obtained results.

 

Downloads

Download data is not yet available.

References

  1. C. Soutis, “Fibre reinforced composites in aircraft construction,” Prog. Aerosp. Sci., vol. 41, no. 2, pp. 143–151, Feb. 2005, doi: https://doi.org/10.1016/j.paerosci.2005.02.004
  2. J. C. Cavalier, I. Berdoyes, E. Bouillon, “Composites in Aerospace Industry,” in Industrial Ceramics, Oct. 2006, pp. 153–162. doi: https://doi.org/10.4028/www.scientific.net/AST.50.153
  3. F. Smith, “The use of composites in aerospace: past, present and future challenges,” Avalon Consultancy Services LTD, Newbury, 2013. [Online]. Available: https://avaloncsl.files.wordpress.com/2013/01/avalon-the-use-of-composites-in-aerospace-s.pdf
  4. G. Brown, “The Use of Composites in Aircraft Construction,” 2014. https://vandaair.com/2014/04/14/the-use-of-composites-in-aircraft-construction/
  5. Muniyasamy Kalanchiam and Moorthy Chinnasamy, “Advantages of Composite Materials in Aircraft Structures,” Int. J. Aerosp. Mech. Eng., vol. 6, no. 11, pp. 2428–2432, 2012.
  6. D. Russo, C. Rizzi, “Structural optimization strategies to design green products,” Comput. Ind., vol. 65, no. 3, pp. 470–479, Apr. 2014, doi: https://doi.org/10.1016/j.compind.2013.12.009
  7. C. R. Bryant, D. A. McAdams, R. B. Stone, T. Kurtoglu, M. I. Campbell, “A Computational Technique for Concept Generation,” in Volume 5a: 17th International Conference on Design Theory and Methodology, Long Beach: ASMEDC, Jan. 2005, pp. 267–276, doi: https://doi.org/10.1115/DETC2005-85323
  8. J. Allison, D. Backman, L. Christodoulou, “Integrated computational materials engineering: A new paradigm for the global materials profession,” JOM, vol. 58, no. 11, pp. 25–27, Nov. 2006, doi: https://doi.org/10.1007/s11837-006-0223-5
  9. A. Tessler, “Structural Analysis Methods for Structural Health Management of Future Aerospace Vehicles,” Key Eng. Mater., vol. 347, pp. 57–66, Sep. 2007, doi: https://doi.org/10.4028/www.scientific.net/KEM.347.57
  10. R. E. Miller, B. F. Backman, H. B. Hansteen, C. M. Lewis, R. A. Samuel, S. R. Varanasi, “Recent advances in computerized aerospace structural analysis and design,” Comput. Struct., vol. 7, no. 2, pp. 315–326, Apr. 1977, doi: https://doi.org/10.1016/0045-7949(77)90051-7
  11. A. F. Correa-Rivera, J. León-Becerra, J. Rodríguez-Ferreira, M. Martínez, O. A. González-Estrada, “Structural analysis of an unmanned aerial vehicle wing made of composite materials,” Sci. Tech., vol. 26, no. 03, pp. 278–289, 2021, doi: https://doi.org/10.22517/23447214.24535
  12. D. F. Hernández-Ménez, I. Félix-González, J. Hernández-Hernández, A. L. Herrera-May, “Methodology for the structural analysis of a main deck of FPSO vessel supporting an offshore crane,” Rev. UIS Ing., vol. 22, no. 1, 2022, doi: https://doi.org/10.18273/revuin.v22n1-2023001
  13. S. D. Rivero-Méndez, J. D. Ordoñez-Martínez, C. S. Correa-Díaz, H. D. Mantilla-Hernández, O. A. González-Estrada, “Caracterización de propiedades elásticas en una muestra de roca tipo arenisca mediante elementos finitos,” Rev. UIS Ing., vol. 21, no. 1, pp. 211–222, 2022, doi: https://doi.org/10.18273/revuin.v21n1-2022016
  14. M. Nurhaniza, M. K. A. Ariffin, A. Ali, F. Mustapha, A. W. Noraini, “Finite element analysis of composites materials for aerospace applications,” IOP Conf. Ser. Mater. Sci. Eng., vol. 11, no. 1, p. 012010, May 2010, doi: https://doi.org/10.1088/1757-899X/11/1/012010
  15. R. Abd Rahman, N. Tamin, O. Kurdi, “Stress analysis of heavy duty truck chasis as a preliminary data for its fatigue life prediction using FEM Crack Monitoring View project Constitutive modelling of large deformation View project,” J. Mek., no. 26, pp. 76–85, 2008.
  16. R. D. Buehrle, G. A. Fleming, R. S. Pappa, F. W. Grosveld, “Finite element model development for aircraft fuselage structures,” in XVIII International Modal Analysis Conference, San Antonio, Texas, 2000.
  17. R. Kaye, M. Heller, “Investigation of shape optimization for the design of life extension options for an F/A-18 airframe FS 470 bulkhead,” J. Strain Anal. Eng. Des., vol. 35, no. 6, pp. 493–505, 2000, doi: https://doi.org/10.1243/0309324001514251
  18. L. U. Hansen, W. Heinze, and P. Horst, “Blended wing body structures in multidisciplinary pre-design,” Struct. Multidiscip. Optim., vol. 36, no. 1, pp. 93–106, 2008, doi: https://doi.org/10.1007/s00158-007-0161-z
  19. S. Ding, X. Zhou, “Structural design and optimization of a morphing wing trailing edge flap,” Aerosp. Syst., vol. 1, no. 2, pp. 109–119, Dec. 2018, doi: https://doi.org/10.1007/s42401-018-0008-x
  20. H. Zheng, L. G. Tham, D. Liu, “On two definitions of the factor of safety commonly used in the finite element slope stability analysis,” Comput. Geotech., vol. 33, no. 3, pp. 188–195, Apr. 2006, doi: https://doi.org/10.1016/j.compgeo.2006.03.007
  21. W. Lu, Y. Tian, P. Liu, “Aerodynamic optimization and mechanism design of flexible variable camber trailing-edge flap,” Chinese J. Aeronaut., vol. 30, no. 3, pp. 988–1003, 2017, doi: https://doi.org/10.1016/j.cja.2017.03.003
  22. S. A. Ardila-Parra, C. M. Pappalardo, O. A. González-Estrada, D. Guida, “Finite element-based redesign and optimization of aircraft structural components using composite materials,” IAENG Int. J. Appl. Math., vol. 50, no. 4, pp. 860–877, 2020.
  23. J. J. Orteu, “3-D computer vision in experimental mechanics,” Opt. Lasers Eng., vol. 47, no. 3–4, pp. 282–291, Mar. 2009, doi: https://doi.org/10.1016/j.optlaseng.2007.11.009
  24. H. Tafaghodi Helali, M. Grafinger, “The precision of FEM simulation results compared with theoretical composite layup calculation,” Compos. Part B Eng., vol. 95, pp. 282–292, 2016, doi: https://doi.org/10.1016/j.compositesb.2016.04.003
  25. K. J. Bathe, Finite Element Procedures, 2nd ed. New Jersey: Prentice Hall, 1996.