Vol. 21 Núm. 4 (2022): Revista UIS Ingenierías
Artículos

Deposición de láser pulsado de hidroxiapatita en Ti-6Al-4V producido por manufactura aditiva

Estefanía Corredor
Universidad Industrial de Santander
Octavio Andrés González-Estrada
Universidad Industrial de Santander
Rogelio Ospina-Ospina
Universidad Industrial de Santander
3D

Publicado 2022-12-27

Palabras clave

  • Deposición por láser pulsado,
  • recubrimiento de hidroxiapatita,
  • titanio,
  • Ti-6Al-4V,
  • EBM,
  • manufactura aditiva
  • ...Más
    Menos

Cómo citar

Corredor, E., González-Estrada, O. A., & Ospina-Ospina , R. (2022). Deposición de láser pulsado de hidroxiapatita en Ti-6Al-4V producido por manufactura aditiva. Revista UIS Ingenierías, 21(4), 107–122. https://doi.org/10.18273/revuin.v21n4-2022010

Resumen

In this work, the mechanical properties, chemical composition, and surface morphology of hydroxyapatite coatings deposited by pulsed laser deposition on Ti6Al4V substrates manufactured by electron beam melting, varying the deposition energy, were studied. The microindentation and indentation tests carried out following the ASTM E384-17 standard allowed to obtain average hardness and microhardness values. Scanning electron microscopy was used to evaluate the substrate coating properties, thus, obtaining average grain size values of the hydroxyapatite coating. Chemical composition resulted from energy-dispersive X-ray spectroscopy analysis. Important characteristics that indicate the incidence of deposition parameters regarding the mechanical and morphological properties of the biocompatible coating on parts produced by additive manufacturing for use in bone implants were evaluated.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. OMS, Informe mundial sobre la discapacidad, vol. 126, no. 3. New York, NY: Organización Mundial de la Salud, 2011.
  2. EMP and NVI, Standards for Prosthetics and Orthotics Service Provision, 4th ed. Washington D. C.: Department of Essential Medicines and Health Products Management of Noncommunicable Diseases, Disability, Violence and Injury Prevention, 2015.
  3. L. M. Bjursten, L. Rasmusson, S. Oh, G. C. Smith, K. S. Brammer, S. Jin, “Titanium dioxide nanotubes enhance bone bonding in vivo,” J. Biomed. Mater. Res., vol. 92, no. 3, pp. 1218–1224, Mar. 2010, doi: https://doi.org/10.1002/jbm.a.32463
  4. M. Niinomi, “Mechanical properties of biomedical titanium alloys,” Mater. Sci. Eng. A243, vol. 243, pp. 231–236, 1998, doi: https://doi.org/10.1016/S0921-5093(97)00806-X
  5. K. D. Crosby, “Titanium-6Aluminum-4Vanadium For Functionally Graded Orthopedic Implant Applications,” Ph.D. Thesis, University of Connecticut, USA, 2013.
  6. A. Das, M. Shukla, “Pulsed laser-deposited hopeite coatings on titanium alloy for orthopaedic implant applications: surface characterization, antibacterial and bioactivity studies,” J. Brazilian Soc. Mech. Sci. Eng., vol. 41, no. 5, 2019, doi: https://doi.org/10.1007/s40430-019-1722-y
  7. H. Zhao, “Microstructure Heterogeneity in Additive Manufactured Ti-6Al-4V,” Ph.D. Thesis, University of Manchester, UK, 2016.
  8. L. E. Murr et al., “Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies,” J. Mater. Sci. Technol., vol. 28, no. 1, pp. 1–14, 2012, doi: https://doi.org/10.1016/S1005-0302(12)60016-4
  9. D. Tang, R. S. Tare, L. Y. Yang, D. F. Williams, K. L. Ou, R. O. C. Oreffo, “Biofabrication of bone tissue: Approaches, challenges and translation for bone regeneration,” Biomaterials, vol. 83, pp. 363–382, 2016, doi: https://doi.org/10.1016/j.biomaterials.2016.01.024
  10. A. Paz, Y. Martín, L. M. Pazos, M. B. Parodi, G. O. Ybarra, J. E. González, “Obtención de recubrimientos de hidroxiapatita sobre titanio mediante el método biomimético,” Rev. Metal., vol. 47, no. 2, pp. 138–146, 2011, doi: https://doi.org/10.3989/revmetalmadrid.1009
  11. J. E. Davies, “Bone bonding at natural and biomaterial surfaces,” Biomaterials, vol. 28, no. 34, pp. 5058–5067, 2007, doi: https://doi.org/10.1016/j.biomaterials.2007.07.049
  12. J. Rojas Tavera, D. Y. Peña Ballesteros, H. A. Estupiñán Durán, “Relación entre las propiedades mecánicas y tribológicas de Ti6AL4V ELI nitrurado mediante descarga intensa de plasma,” Cienc. e Ing. Neogranadina, vol. 24, no. 2, p. 7, 2014, doi: https://doi.org/10.18359/rcin.390
  13. J. Yu, X. Chu, Y. Cai, P. Tong, J. Yao, “Preparation and characterization of antimicrobial nano-hydroxyapatite composites,” Mater. Sci. Eng., vol. 37, no. 1, pp. 54–59, 2014, doi: https://doi.org/10.1016/j.msec.2013.12.038
  14. C. Larsson et al., “Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses,” Biomaterials, vol. 17, pp. 605–616, 1996.
  15. T. Kokubo, H. M. Kim, M. Kawashita, “Novel bioactive materials with different mechanical properties,” Biomaterials, vol. 24, no. 13, pp. 2161–2175, 2003, doi: https://doi.org/10.1016/S0142-9612(03)00044-9
  16. J. W. Park, K. B. Park, J. Y. Suh, “Effects of calcium ion incorporation on bone healing of Ti6Al4V alloy implants in rabbit tibiae,” Biomaterials, vol. 28, no. 22, pp. 3306–3313, 2007, doi: https://doi.org/10.1016/j.biomaterials.2007.04.007
  17. J. Faig-Martí, F. J. Gil-Mur, “Los recubrimientos de hidroxiapatita en las prótesis articulares,” Rev. Esp. Cir. Ortop. Traumatol., vol. 52, no. 2, pp. 113–120, 2008, doi: https://doi.org/10.1016/s1888-4415(08)74805-7
  18. T. M. Sridhar, T. K. Arumugam, S. Rajeswari, M. Subbaiyan, “Electrochemical behaviour of hydroxyapatite-coated stainless steel implants Potential,” J. Mater. Sci. Lett., vol. 16, pp. 1964–1966, 1997.
  19. S. V. Dorozhkin, “Calcium Orthophosphates in Nature, Biology and Medicine,” Materials (Basel)., vol. 2, no. 2, pp. 399–498, 2009, doi: https://doi.org/10.3390/ma2020399
  20. Y. Oshida, “10 - Fabrication Technologies,” in Bioscience and Bioengineering of Titanium Materials, 2nd ed., Y. Oshida, Ed. Elsevier, 2013, pp. 303–340.
  21. B. Fotovvati, N. Namdari, A. Dehghanghadikolaei, “On coating techniques for surface protection: A review,” J. Manuf. Mater. Process., vol. 3, no. 1, 2019, doi: https://doi.org/10.3390/jmmp3010028
  22. J. L. Arias et al., “Physicochemical properties of calcium phosphate coatings produced by pulsed laser deposition at different water vapour pressures,” Biomaterials, vol. 19, pp. 883–888, 1998.
  23. E. Mohseni, E. Zalnezhad, A. R. Bushroa, “Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: A review paper,” Int. J. Adhes. Adhes., vol. 48, no. January, pp. 238–257, 2014, doi: https://doi.org/10.1016/j.ijadhadh.2013.09.030
  24. G. C. Gomes, F. F. Borghi, R. O. Ospina, E. O. López, F. O. Borges, A. Mello, “Nd:YAG (532 nm) pulsed laser deposition produces crystalline hydroxyapatite thin coatings at room temperature,” Surf. Coatings Technol., vol. 329, pp. 174–183, 2017, doi: https://doi.org/10.1016/j.surfcoat.2017.09.008
  25. ARCAM AB, ARCAM Ti6Al4V ELI Titanium Alloy Datasheet. Mölndal, Sweden: Arcam AB, 2015.
  26. E. Martínez, R. Niñerola, D. Ortiz, “Evaluación de tratamientos térmicos en la aleación Ti6Al4V procesada con técnicas de fabricación aditiva por haz de electrones (EBM),” in Congreso Internacional de Tratamientos Térmicos y de Superficie TRATERMAT 2017, 2017, pp. 1–23.
  27. T. Ferreira and W. Rasband, ImageJ User Guide, vol. 1J1.46r. 2012.
  28. O. A. González-Estrada, A. D. Pertuz Comas, R. Ospina, “Characterization of hydroxyapatite coatings produced by pulsed-laser deposition on additive manufacturing Ti6Al4V ELI,” Thin Solid Films, vol. 763, p. 139592, 2022, doi: https://doi.org/10.1016/j.tsf.2022.139592
  29. O. C. C. Sanni, “Microstructural, Mechanical and Tribological Studies of Ti-6Al-4V Thin Plates Produced by EBM Process,” M.Sc. Thesis, Dalarna University, Sweden, 2019.
  30. O. Blind, L. H. Klein, B. Dailey, L. Jordan, “Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates,” Dent. Mater., vol. 21, no. 11, pp. 1017–1024, 2005, doi: https://doi.org/10.1016/j.dental.2004.12.003
  31. A. B. Novaes Jr, S. L. S. de Souza, R. R. M. de Barros, K. K. Y. Pereira, G. Iezzi, A. Piattelli, “Influence of implant surfaces on osseointegration,” Braz. Dent. J., vol. 21, no. 6, pp. 471–481, 2010, doi: https://doi.org/10.1590/S0103-64402010000600001
  32. E. Velasco-Ortega et al., “Relevant aspects in the surface properties in titanium dental implants for the cellular viability,” Mater. Sci. Eng. C, vol. 64, pp. 1–10, 2016, doi: https://doi.org/10.1016/j.msec.2016.03.049