Pulsed laser deposition of hydroxyapatite on additive manufacturing Ti-6Al-4V
Published 2022-12-27
Keywords
- Pulsed-laser deposition,
- hydroxyapatite coating,
- titanium,
- Ti-6Al-4V,
- EBM
- additive manufacturing ...More
How to Cite
Copyright (c) 2022 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
En este trabajo, se estudiaron las propiedades mecánicas, composición química y la morfología superficial de recubrimientos de hidroxiapatita, depositados mediante deposición por láser pulsado sobre sustratos de Ti6Al4V fabricados por electron beam melting, variando la energía de deposición. Los ensayos de microindentación e indentación realizados de acuerdo con la norma ASTM E384-17, permitieron obtener valores de dureza y microdureza promedios. Para la evaluación de las propiedades del recubrimiento del sustrato se empleó microscopia electrónica de barrido, obteniendo así valores promedio de tamaño de formación de partículas de hidroxiapatita del recubrimiento. La composición química se obtuvo del análisis por espectroscopia de rayos X por energía dispersiva. Se evaluaron características importantes que indican la incidencia de los parámetros de deposición con respecto a las propiedades mecánicas, morfológicas y composición química del recubrimiento biocompatible sobre partes producidas mediante manufactura aditiva para su uso en implantes óseos.
Downloads
References
- OMS, Informe mundial sobre la discapacidad, vol. 126, no. 3. New York, NY: Organización Mundial de la Salud, 2011.
- EMP and NVI, Standards for Prosthetics and Orthotics Service Provision, 4th ed. Washington D. C.: Department of Essential Medicines and Health Products Management of Noncommunicable Diseases, Disability, Violence and Injury Prevention, 2015.
- L. M. Bjursten, L. Rasmusson, S. Oh, G. C. Smith, K. S. Brammer, S. Jin, “Titanium dioxide nanotubes enhance bone bonding in vivo,” J. Biomed. Mater. Res., vol. 92, no. 3, pp. 1218–1224, Mar. 2010, doi: https://doi.org/10.1002/jbm.a.32463
- M. Niinomi, “Mechanical properties of biomedical titanium alloys,” Mater. Sci. Eng. A243, vol. 243, pp. 231–236, 1998, doi: https://doi.org/10.1016/S0921-5093(97)00806-X
- K. D. Crosby, “Titanium-6Aluminum-4Vanadium For Functionally Graded Orthopedic Implant Applications,” Ph.D. Thesis, University of Connecticut, USA, 2013.
- A. Das, M. Shukla, “Pulsed laser-deposited hopeite coatings on titanium alloy for orthopaedic implant applications: surface characterization, antibacterial and bioactivity studies,” J. Brazilian Soc. Mech. Sci. Eng., vol. 41, no. 5, 2019, doi: https://doi.org/10.1007/s40430-019-1722-y
- H. Zhao, “Microstructure Heterogeneity in Additive Manufactured Ti-6Al-4V,” Ph.D. Thesis, University of Manchester, UK, 2016.
- L. E. Murr et al., “Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies,” J. Mater. Sci. Technol., vol. 28, no. 1, pp. 1–14, 2012, doi: https://doi.org/10.1016/S1005-0302(12)60016-4
- D. Tang, R. S. Tare, L. Y. Yang, D. F. Williams, K. L. Ou, R. O. C. Oreffo, “Biofabrication of bone tissue: Approaches, challenges and translation for bone regeneration,” Biomaterials, vol. 83, pp. 363–382, 2016, doi: https://doi.org/10.1016/j.biomaterials.2016.01.024
- A. Paz, Y. Martín, L. M. Pazos, M. B. Parodi, G. O. Ybarra, J. E. González, “Obtención de recubrimientos de hidroxiapatita sobre titanio mediante el método biomimético,” Rev. Metal., vol. 47, no. 2, pp. 138–146, 2011, doi: https://doi.org/10.3989/revmetalmadrid.1009
- J. E. Davies, “Bone bonding at natural and biomaterial surfaces,” Biomaterials, vol. 28, no. 34, pp. 5058–5067, 2007, doi: https://doi.org/10.1016/j.biomaterials.2007.07.049
- J. Rojas Tavera, D. Y. Peña Ballesteros, H. A. Estupiñán Durán, “Relación entre las propiedades mecánicas y tribológicas de Ti6AL4V ELI nitrurado mediante descarga intensa de plasma,” Cienc. e Ing. Neogranadina, vol. 24, no. 2, p. 7, 2014, doi: https://doi.org/10.18359/rcin.390
- J. Yu, X. Chu, Y. Cai, P. Tong, J. Yao, “Preparation and characterization of antimicrobial nano-hydroxyapatite composites,” Mater. Sci. Eng., vol. 37, no. 1, pp. 54–59, 2014, doi: https://doi.org/10.1016/j.msec.2013.12.038
- C. Larsson et al., “Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses,” Biomaterials, vol. 17, pp. 605–616, 1996.
- T. Kokubo, H. M. Kim, M. Kawashita, “Novel bioactive materials with different mechanical properties,” Biomaterials, vol. 24, no. 13, pp. 2161–2175, 2003, doi: https://doi.org/10.1016/S0142-9612(03)00044-9
- J. W. Park, K. B. Park, J. Y. Suh, “Effects of calcium ion incorporation on bone healing of Ti6Al4V alloy implants in rabbit tibiae,” Biomaterials, vol. 28, no. 22, pp. 3306–3313, 2007, doi: https://doi.org/10.1016/j.biomaterials.2007.04.007
- J. Faig-Martí, F. J. Gil-Mur, “Los recubrimientos de hidroxiapatita en las prótesis articulares,” Rev. Esp. Cir. Ortop. Traumatol., vol. 52, no. 2, pp. 113–120, 2008, doi: https://doi.org/10.1016/s1888-4415(08)74805-7
- T. M. Sridhar, T. K. Arumugam, S. Rajeswari, M. Subbaiyan, “Electrochemical behaviour of hydroxyapatite-coated stainless steel implants Potential,” J. Mater. Sci. Lett., vol. 16, pp. 1964–1966, 1997.
- S. V. Dorozhkin, “Calcium Orthophosphates in Nature, Biology and Medicine,” Materials (Basel)., vol. 2, no. 2, pp. 399–498, 2009, doi: https://doi.org/10.3390/ma2020399
- Y. Oshida, “10 - Fabrication Technologies,” in Bioscience and Bioengineering of Titanium Materials, 2nd ed., Y. Oshida, Ed. Elsevier, 2013, pp. 303–340.
- B. Fotovvati, N. Namdari, A. Dehghanghadikolaei, “On coating techniques for surface protection: A review,” J. Manuf. Mater. Process., vol. 3, no. 1, 2019, doi: https://doi.org/10.3390/jmmp3010028
- J. L. Arias et al., “Physicochemical properties of calcium phosphate coatings produced by pulsed laser deposition at different water vapour pressures,” Biomaterials, vol. 19, pp. 883–888, 1998.
- E. Mohseni, E. Zalnezhad, A. R. Bushroa, “Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: A review paper,” Int. J. Adhes. Adhes., vol. 48, no. January, pp. 238–257, 2014, doi: https://doi.org/10.1016/j.ijadhadh.2013.09.030
- G. C. Gomes, F. F. Borghi, R. O. Ospina, E. O. López, F. O. Borges, A. Mello, “Nd:YAG (532 nm) pulsed laser deposition produces crystalline hydroxyapatite thin coatings at room temperature,” Surf. Coatings Technol., vol. 329, pp. 174–183, 2017, doi: https://doi.org/10.1016/j.surfcoat.2017.09.008
- ARCAM AB, ARCAM Ti6Al4V ELI Titanium Alloy Datasheet. Mölndal, Sweden: Arcam AB, 2015.
- E. Martínez, R. Niñerola, D. Ortiz, “Evaluación de tratamientos térmicos en la aleación Ti6Al4V procesada con técnicas de fabricación aditiva por haz de electrones (EBM),” in Congreso Internacional de Tratamientos Térmicos y de Superficie TRATERMAT 2017, 2017, pp. 1–23.
- T. Ferreira and W. Rasband, ImageJ User Guide, vol. 1J1.46r. 2012.
- O. A. González-Estrada, A. D. Pertuz Comas, R. Ospina, “Characterization of hydroxyapatite coatings produced by pulsed-laser deposition on additive manufacturing Ti6Al4V ELI,” Thin Solid Films, vol. 763, p. 139592, 2022, doi: https://doi.org/10.1016/j.tsf.2022.139592
- O. C. C. Sanni, “Microstructural, Mechanical and Tribological Studies of Ti-6Al-4V Thin Plates Produced by EBM Process,” M.Sc. Thesis, Dalarna University, Sweden, 2019.
- O. Blind, L. H. Klein, B. Dailey, L. Jordan, “Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates,” Dent. Mater., vol. 21, no. 11, pp. 1017–1024, 2005, doi: https://doi.org/10.1016/j.dental.2004.12.003
- A. B. Novaes Jr, S. L. S. de Souza, R. R. M. de Barros, K. K. Y. Pereira, G. Iezzi, A. Piattelli, “Influence of implant surfaces on osseointegration,” Braz. Dent. J., vol. 21, no. 6, pp. 471–481, 2010, doi: https://doi.org/10.1590/S0103-64402010000600001
- E. Velasco-Ortega et al., “Relevant aspects in the surface properties in titanium dental implants for the cellular viability,” Mater. Sci. Eng. C, vol. 64, pp. 1–10, 2016, doi: https://doi.org/10.1016/j.msec.2016.03.049