Vol. 21 No. 4 (2022): Revista UIS Ingenierías
Articles

Pulsed laser deposition of hydroxyapatite on additive manufacturing Ti-6Al-4V

Estefanía Corredor
Universidad Industrial de Santander
Octavio Andrés González-Estrada
Universidad Industrial de Santander
Rogelio Ospina-Ospina
Universidad Industrial de Santander
3D

Published 2022-12-27

Keywords

  • Pulsed-laser deposition,
  • hydroxyapatite coating,
  • titanium,
  • Ti-6Al-4V,
  • EBM,
  • additive manufacturing
  • ...More
    Less

How to Cite

Corredor, E., González-Estrada, O. A., & Ospina-Ospina , R. (2022). Pulsed laser deposition of hydroxyapatite on additive manufacturing Ti-6Al-4V. Revista UIS Ingenierías, 21(4), 107–122. https://doi.org/10.18273/revuin.v21n4-2022010

Abstract

En este trabajo, se estudiaron las propiedades mecánicas, composición química y la morfología superficial de recubrimientos de hidroxiapatita, depositados mediante deposición por láser pulsado sobre sustratos de Ti6Al4V fabricados por electron beam melting, variando la energía de deposición. Los ensayos de microindentación e indentación realizados de acuerdo con la norma ASTM E384-17, permitieron obtener valores de dureza y microdureza promedios. Para la evaluación de las propiedades del recubrimiento del sustrato se empleó microscopia electrónica de barrido, obteniendo así valores promedio de tamaño de formación de partículas de hidroxiapatita del recubrimiento. La composición química se obtuvo del análisis por espectroscopia de rayos X por energía dispersiva. Se evaluaron características importantes que indican la incidencia de los parámetros de deposición con respecto a las propiedades mecánicas, morfológicas y composición química del recubrimiento biocompatible sobre partes producidas mediante manufactura aditiva para su uso en implantes óseos.

Downloads

Download data is not yet available.

References

  1. OMS, Informe mundial sobre la discapacidad, vol. 126, no. 3. New York, NY: Organización Mundial de la Salud, 2011.
  2. EMP and NVI, Standards for Prosthetics and Orthotics Service Provision, 4th ed. Washington D. C.: Department of Essential Medicines and Health Products Management of Noncommunicable Diseases, Disability, Violence and Injury Prevention, 2015.
  3. L. M. Bjursten, L. Rasmusson, S. Oh, G. C. Smith, K. S. Brammer, S. Jin, “Titanium dioxide nanotubes enhance bone bonding in vivo,” J. Biomed. Mater. Res., vol. 92, no. 3, pp. 1218–1224, Mar. 2010, doi: https://doi.org/10.1002/jbm.a.32463
  4. M. Niinomi, “Mechanical properties of biomedical titanium alloys,” Mater. Sci. Eng. A243, vol. 243, pp. 231–236, 1998, doi: https://doi.org/10.1016/S0921-5093(97)00806-X
  5. K. D. Crosby, “Titanium-6Aluminum-4Vanadium For Functionally Graded Orthopedic Implant Applications,” Ph.D. Thesis, University of Connecticut, USA, 2013.
  6. A. Das, M. Shukla, “Pulsed laser-deposited hopeite coatings on titanium alloy for orthopaedic implant applications: surface characterization, antibacterial and bioactivity studies,” J. Brazilian Soc. Mech. Sci. Eng., vol. 41, no. 5, 2019, doi: https://doi.org/10.1007/s40430-019-1722-y
  7. H. Zhao, “Microstructure Heterogeneity in Additive Manufactured Ti-6Al-4V,” Ph.D. Thesis, University of Manchester, UK, 2016.
  8. L. E. Murr et al., “Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies,” J. Mater. Sci. Technol., vol. 28, no. 1, pp. 1–14, 2012, doi: https://doi.org/10.1016/S1005-0302(12)60016-4
  9. D. Tang, R. S. Tare, L. Y. Yang, D. F. Williams, K. L. Ou, R. O. C. Oreffo, “Biofabrication of bone tissue: Approaches, challenges and translation for bone regeneration,” Biomaterials, vol. 83, pp. 363–382, 2016, doi: https://doi.org/10.1016/j.biomaterials.2016.01.024
  10. A. Paz, Y. Martín, L. M. Pazos, M. B. Parodi, G. O. Ybarra, J. E. González, “Obtención de recubrimientos de hidroxiapatita sobre titanio mediante el método biomimético,” Rev. Metal., vol. 47, no. 2, pp. 138–146, 2011, doi: https://doi.org/10.3989/revmetalmadrid.1009
  11. J. E. Davies, “Bone bonding at natural and biomaterial surfaces,” Biomaterials, vol. 28, no. 34, pp. 5058–5067, 2007, doi: https://doi.org/10.1016/j.biomaterials.2007.07.049
  12. J. Rojas Tavera, D. Y. Peña Ballesteros, H. A. Estupiñán Durán, “Relación entre las propiedades mecánicas y tribológicas de Ti6AL4V ELI nitrurado mediante descarga intensa de plasma,” Cienc. e Ing. Neogranadina, vol. 24, no. 2, p. 7, 2014, doi: https://doi.org/10.18359/rcin.390
  13. J. Yu, X. Chu, Y. Cai, P. Tong, J. Yao, “Preparation and characterization of antimicrobial nano-hydroxyapatite composites,” Mater. Sci. Eng., vol. 37, no. 1, pp. 54–59, 2014, doi: https://doi.org/10.1016/j.msec.2013.12.038
  14. C. Larsson et al., “Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses,” Biomaterials, vol. 17, pp. 605–616, 1996.
  15. T. Kokubo, H. M. Kim, M. Kawashita, “Novel bioactive materials with different mechanical properties,” Biomaterials, vol. 24, no. 13, pp. 2161–2175, 2003, doi: https://doi.org/10.1016/S0142-9612(03)00044-9
  16. J. W. Park, K. B. Park, J. Y. Suh, “Effects of calcium ion incorporation on bone healing of Ti6Al4V alloy implants in rabbit tibiae,” Biomaterials, vol. 28, no. 22, pp. 3306–3313, 2007, doi: https://doi.org/10.1016/j.biomaterials.2007.04.007
  17. J. Faig-Martí, F. J. Gil-Mur, “Los recubrimientos de hidroxiapatita en las prótesis articulares,” Rev. Esp. Cir. Ortop. Traumatol., vol. 52, no. 2, pp. 113–120, 2008, doi: https://doi.org/10.1016/s1888-4415(08)74805-7
  18. T. M. Sridhar, T. K. Arumugam, S. Rajeswari, M. Subbaiyan, “Electrochemical behaviour of hydroxyapatite-coated stainless steel implants Potential,” J. Mater. Sci. Lett., vol. 16, pp. 1964–1966, 1997.
  19. S. V. Dorozhkin, “Calcium Orthophosphates in Nature, Biology and Medicine,” Materials (Basel)., vol. 2, no. 2, pp. 399–498, 2009, doi: https://doi.org/10.3390/ma2020399
  20. Y. Oshida, “10 - Fabrication Technologies,” in Bioscience and Bioengineering of Titanium Materials, 2nd ed., Y. Oshida, Ed. Elsevier, 2013, pp. 303–340.
  21. B. Fotovvati, N. Namdari, A. Dehghanghadikolaei, “On coating techniques for surface protection: A review,” J. Manuf. Mater. Process., vol. 3, no. 1, 2019, doi: https://doi.org/10.3390/jmmp3010028
  22. J. L. Arias et al., “Physicochemical properties of calcium phosphate coatings produced by pulsed laser deposition at different water vapour pressures,” Biomaterials, vol. 19, pp. 883–888, 1998.
  23. E. Mohseni, E. Zalnezhad, A. R. Bushroa, “Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: A review paper,” Int. J. Adhes. Adhes., vol. 48, no. January, pp. 238–257, 2014, doi: https://doi.org/10.1016/j.ijadhadh.2013.09.030
  24. G. C. Gomes, F. F. Borghi, R. O. Ospina, E. O. López, F. O. Borges, A. Mello, “Nd:YAG (532 nm) pulsed laser deposition produces crystalline hydroxyapatite thin coatings at room temperature,” Surf. Coatings Technol., vol. 329, pp. 174–183, 2017, doi: https://doi.org/10.1016/j.surfcoat.2017.09.008
  25. ARCAM AB, ARCAM Ti6Al4V ELI Titanium Alloy Datasheet. Mölndal, Sweden: Arcam AB, 2015.
  26. E. Martínez, R. Niñerola, D. Ortiz, “Evaluación de tratamientos térmicos en la aleación Ti6Al4V procesada con técnicas de fabricación aditiva por haz de electrones (EBM),” in Congreso Internacional de Tratamientos Térmicos y de Superficie TRATERMAT 2017, 2017, pp. 1–23.
  27. T. Ferreira and W. Rasband, ImageJ User Guide, vol. 1J1.46r. 2012.
  28. O. A. González-Estrada, A. D. Pertuz Comas, R. Ospina, “Characterization of hydroxyapatite coatings produced by pulsed-laser deposition on additive manufacturing Ti6Al4V ELI,” Thin Solid Films, vol. 763, p. 139592, 2022, doi: https://doi.org/10.1016/j.tsf.2022.139592
  29. O. C. C. Sanni, “Microstructural, Mechanical and Tribological Studies of Ti-6Al-4V Thin Plates Produced by EBM Process,” M.Sc. Thesis, Dalarna University, Sweden, 2019.
  30. O. Blind, L. H. Klein, B. Dailey, L. Jordan, “Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates,” Dent. Mater., vol. 21, no. 11, pp. 1017–1024, 2005, doi: https://doi.org/10.1016/j.dental.2004.12.003
  31. A. B. Novaes Jr, S. L. S. de Souza, R. R. M. de Barros, K. K. Y. Pereira, G. Iezzi, A. Piattelli, “Influence of implant surfaces on osseointegration,” Braz. Dent. J., vol. 21, no. 6, pp. 471–481, 2010, doi: https://doi.org/10.1590/S0103-64402010000600001
  32. E. Velasco-Ortega et al., “Relevant aspects in the surface properties in titanium dental implants for the cellular viability,” Mater. Sci. Eng. C, vol. 64, pp. 1–10, 2016, doi: https://doi.org/10.1016/j.msec.2016.03.049