Vol. 24 No. 1 (2025): Revista UIS Ingenierías
Articles

Kinematic calibration of serial robots using low-cost tools

Luz Adriana Mejía-Calderón
Universidad Tecnológica de Pereira
Carlos Alberto Romero-Piedrahita
Universidad Tecnológica de Pereira
Cristhian David Borrero-Velez
Universidad Tecnológica de Pereira

Published 2025-03-19

Keywords

  • modeling,
  • kinematic,
  • identification,
  • dimensional calibration,
  • video analysis,
  • ABB robot
  • ...More
    Less

How to Cite

Mejía-Calderón, L. A., Romero-Piedrahita, C. A., & Borrero-Velez, C. D. (2025). Kinematic calibration of serial robots using low-cost tools . Revista UIS Ingenierías, 24(1), 101–112. https://doi.org/10.18273/revuin.v24n1-2025009

Abstract

This paper presents the kinematic calibration of an open-chain robot using low-cost tools to measure the position of its end-effector. These tools include a smartphone video camera and an open-access online video analysis program. The methodology involves developing the robot’s direct kinematic and identification models, executing motion trajectories, and recording them in two perpendicular planes. The videos extract the kinematic position variables required for the identification model. This section explains the calibration process, including axis alignment, reference points, and length measurements. It also details how the position variables can be obtained either manually or automatically using the video analysis program. Next, the dimensions of the robot’s links are identified and validated by applying the calibrated dimensions to a trajectory different from the one used during calibration. When applied to an simulated ABB IRB120 robot, this methodology successfully identified the link dimensions with low errors. However, the precision achieved exceeded the specifications provided in the robot’s catalog. The use of the video analysis program allowed for the automated determination of the robot’s end-effector positions, significantly reducing human intervention in the calibration process. The proposed methodology is simple, cost-effective, and suitable for systems that do not require high precision.

Downloads

Download data is not yet available.

References

  1. M. Khanesar, M. Yan, M. Isa, S. Piano, D. Branson, “Precision Denavit–Hartenberg Parameter Calibration for Industrial Robots Using a Laser Tracker System and Intelligent Optimization Approaches,” Sensors, vol. 23, 5368, 2023, doi: https://doi.org/10.3390/s23125368
  2. T. Messay, R. Ordoñez, E. Marcil, “Computationally efficient and robust kinematic calibration methodologies and their application to industrial robots”, Robotics and Computer-Integrated Manufacturing, vol. 37, pp. 33–48, 2016, doi: https://doi.org/10.1016/j.rcim.2015.06.003
  3. A. Goswami, A. Quaid, M. Peshkin, “Identifying robot parameters using partial pose information”, IEEE Control Systems Magazine, vol. 13, pp. 6-14, 1993, doi: https://doi.org/10.1109/37.236317
  4. M. Driels, W. Swayze, “Automated partial pose measurement system for manipulator calibration experiments,” IEEE Transactions on Robotics and Automation, vol. 10, pp. 430-440, 1994, doi: https://doi.org/10.1109/70.313094
  5. G. Tang, L. Liu, “Robot calibration using a single laser displacement meter,” Mechatronics, vol. 3, no.4, pp. 503-516, 1993, doi: https://doi.org/10.1016/0957-4158(93)90020-3
  6. D. Whitney, C. Lozinski, J. Rourke, “Industrial Robot Forward Calibration Method and Results”, Journal of Dynamic Systems, Measurement and Control, vol. 108, no. 1, pp 1-8, 1986, doi: https://doi.org/10.1115/1.3143737
  7. W. Zhu, B. Mei, G. Yan, Y. Ke, “Measurement error analysis and accuracy enhancement of 2D vision system for robotic drilling”, Robotics and Computer-Integrated Manufacturing, vol. 30, no. 2, 2014, doi: https://doi.org/10.1016/j.rcim.2013.09.014
  8. X. Chen, Q. Zhang, Y. Sun, “Non-kinematic calibration of industrial robots using a rigid–flexible coupling error model and a full pose measurement method”, Robotics and Computer-Integrated Manufacturing, vol. 57, pp. 46–58, 2019, doi: https://doi.org/10.1016/j.rcim.2018.07.002
  9. A. Nubiola, I. Bonev, “Absolute robot calibration with a single telescoping ballbar”, Precision Engineering, vol. 38, no. 3, pp. 472-480, 2014, doi: https://doi.org/10.1016/j.precisioneng.2014.01.001
  10. P. Jingfu, D. Ye, Z. Gang, D. Han, “An enhanced kinematic model for calibration of robotic machining systems with parallelogram mechanisms”, Robotics and Computer-Integrated Manufacturing, vol. 59 (C), 2019, doi: https://doi.org/110.1016/j.rcim.2019.03.00
  11. M. Bai, M. Zhang, H. Zhang, M. Li, J. Zhao, Z.Chen, “ Calibration method based on models and Least-Squares support vector regression enhancing robot position accuracy”, IEEE Access, vol. 9, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3115949
  12. Y.Cai, H.Gub, C.Li & H.Liua, “Easy industrial robot cell coordinates calibration with touch panel”, Robotics and Computer–Integrated Manufacturing, vol. 50, 2018, doi: https://doi.org/10.1016/j.rcim.2017.10.004
  13. A. Barrientos, L. Peñin, C. Balaguer, R. Aracil, Fundamentos de robótica. España: McGraw-Hill, 2014.
  14. L. Mejía, “Metodología para la Identificación de Parámetros Dinámicos en Sistemas Mecánicos de Baja Movilidad: Aplicación a una Suspensión de Vehículo Automóvil”, Tesis Doctoral, Universidad Politécnica de Valencia, España, 2016.
  15. N. Grisales, S. Durango, C. Álvarez, R. Flórez, “Calibración cinemática de una ruteadora CNC usando un modelo cuasi-estático de error y fotogrametría monocular”, Rev UIS Ing, vol 19, no 3, 2020, doi: https://doi.org/10.18273/revuin.v19n3-2020002
  16. V. Mata, F. Benimeli, N. Farhat, A. Valera, “Dynamic parameter identification in industrial robots considering physical feasibility”, Journal of Advanced Robotics, vol. 19, no. 1, 2005, doi: https://doi.org/10.1163/1568553053020269