Simultaneous heating microwaves-thermal radiation
Published 2020-03-09
Keywords
- thermal treatment,
- electromagnetic waves,
- hybrid heating,
- style,
- heterogeneous materials
How to Cite
Copyright (c) 2020 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
In this article we present the results of the simulation of a hybrid heat treatment methodology for materials, by using electromagnetic waves in the microwave range and the thermal power radiation of an electrical resistance. This resistance was placed in such a way that only half of the solid (a two-layers sphere) receives its energy. Then, it was controlled to produce a constant and uniform heat flow. In addition, for the present case, materials with different thermophysical properties were defined in each layer, which were considered to be invariant both with position and with temperature. The heat flow was considered constant over time. The temperature profiles for each layer showed variations in time and position, so it was observed that this simultaneous heating eases the adjustment of these profiles, according to the needs of thermal treatment. Thus, the advantage of hybrid heating was evidenced.
Downloads
References
[2] B. Yan et al., “Microwave treatment regulates the free volume of rice starch”, Sci. Rep., vol. 9, no. 1, pp. 3876, 2019, doi: 10.1038/s41598-019-40598-3
[3] J. A. Rudd et al., “Solvent-free microwave-assisted synthesis of tenorite nanoparticle-decorated multi-walled carbon nanotubes”, J. Mater. Sci. Technol., vol. 35, no. 6, pp. 1121–1127, Jun. 2019, doi: 10.1016/j.jmst.2019.01.002
[4] Y. Liu, T. Jiang, C. Liu, W. Huang, J. Wang, and X. Xue, “Effect of microwave pre-treatment on the magnetic properties of Ludwigite and its implications on magnetic separation”, Metall. Res. Technol., vol. 116, no. 1, pp. 107, Dec. 2019, doi: 10.1051/metal/2018087
[5] D. Jhodkar, M. Amarnath, H. Chelladurai, and J. Ramkumar, “Experimental Investigations to Study the Effects of Microwave Treatment Strategy on Tool Performance in Turning Operation”, J. Mater. Eng. Perform., vol. 27, no. 12, pp. 6374–6388, 2018, doi: 10.1007/s11665-018-3742-7
[6] Ł. Zedler, M. Klein, M. R. Saeb, X. Colom, J. Cañavate, and K. Formela, “Synergistic Effects of Bitumen Plasticization and Microwave Treatment on Short-Term Devulcanization of Ground Tire Rubber”, Polymers (Basel)., vol. 10, no. 11, pp. 1265, Nov. 2018, doi: 10.3390/polym10111265
[7] H. Xiao, L. Lin, and F. Fu, “Temperature characteristics of wood during microwave treatments”, J. For. Res., vol. 29, no. 6, pp. 1815–1820, Nov. 2018, doi: 10.1007/s11676-018-0599-4
[8] S. S. Behera, S. K. Panda, D. Mandal, and P. K. Parhi, “Ultrasound and Microwave assisted leaching of neodymium from waste magnet using organic solvent”, Hydrometallurgy, vol. 185, pp. 61–70, May 2019, doi: 10.1016/j.hydromet.2019.02.003
[9] Y. Kang et al., “Microwave-constructed honeycomb architectures of h-BN/rGO nano-hybrids for efficient microwave conversion”, Compos. Sci. Technol., vol. 174, pp. 184–193, Apr. 2019, doi: 10.1016/j.compscitech.2019.02.029
[10] G. G. Morbioli, N. C. Speller, M. E. Cato, T. P. Cantrell, and A. M. Stockton, “Rapid and low-cost development of microfluidic devices using wax printing and microwave treatment”, Sensors Actuators B Chem., vol. 284, pp. 650–656, Apr. 2019, doi: 10.1016/j.snb.2018.12.053
[11] A. Banerji, L. Ananthanarayan, and S. S. Lele, “Dough browning inhibition of multigrain Indian flatbread (chapatti) using a combination of chemical and microwave treatment”, J. Food Meas. Charact., vol. 13, no. 1, pp. 807–820, Mar. 2019, doi: 10.1007/s11694-018-9993-z
[12] A. B. Mahdi and C. Gomes, “Effects of microwave radiation on micro-organisms in selected materials from healthcare waste”, Int. J. Environ. Sci. Technol., vol. 16, no. 3, pp. 1277–1288, Mar. 2019, doi: 10.1007/s13762-018-1741-8
[13] J. Wang, T. Jiang, Y. Liu, and X. Xue, “Influence of microwave treatment on grinding and dissociation characteristics of vanadium titano-magnetite”, Int. J. Miner. Metall. Mater., vol. 26, no. 2, pp. 160–167, Feb. 2019, doi: 10.1007/s12613-019-1720-1
[14] M. Liu, C. Li, and Q. Wang, “Microstructural Characteristics of Larch Wood Treated by High-intensity Microwave”, Bioresour. Vol 14, No 1, 2018
[15] J. Liu, C. Zhang, S. Guo, L. Xu, S. Xiao, and Z. Shen, “Microwave treatment of pre-oxidized fibers for improving their structure and mechanical properties”, Ceram. Int., vol. 45, no. 1, pp. 1379–1384, Jan. 2019, doi: 10.1016/j.ceramint.2018.08.311
[16] S. Singh, P. K. Jain, and Rizwan-uddin, “Analytical Solution for Three-Dimensional, Unsteady Heat Conduction in a Multilayer Sphere”, J. Heat Transfer, vol. 138, no. 10, Oct. 2016, doi: 10.1115/1.4033536