Vol. 19 No. 2 (2020): Revista UIS Ingenierías
Articles

Simultaneous heating microwaves-thermal radiation

Milton Muñoz-Neira
Fundación Universitaria de San Gil
Jorge Cruz-Duarte
Tecnológico de Monterrey
Rodrigo Correa
Universidad Industrial de Santander

Published 2020-03-09

Keywords

  • thermal treatment,
  • electromagnetic waves,
  • hybrid heating,
  • style,
  • heterogeneous materials

How to Cite

Muñoz-Neira, M., Cruz-Duarte, J., & Correa, R. (2020). Simultaneous heating microwaves-thermal radiation. Revista UIS Ingenierías, 19(2), 33–42. https://doi.org/10.18273/revuin.v19n2-2020004

Abstract

In this article we present the results of the simulation of a hybrid heat treatment methodology for materials, by using electromagnetic waves in the microwave range and the thermal power radiation of an electrical resistance. This resistance was placed in such a way that only half of the solid (a two-layers sphere) receives its energy. Then, it was controlled to produce a constant and uniform heat flow. In addition, for the present case, materials with different thermophysical properties were defined in each layer, which were considered to be invariant both with position and with temperature. The heat flow was considered constant over time. The temperature profiles for each layer showed variations in time and position, so it was observed that this simultaneous heating eases the adjustment of these profiles, according to the needs of thermal treatment. Thus, the advantage of hybrid heating was evidenced.

Downloads

Download data is not yet available.

References

[1] N. R. Council, Micro Wave Processing. Washington, USA: The National Academies, 1994.

[2] B. Yan et al., “Microwave treatment regulates the free volume of rice starch”, Sci. Rep., vol. 9, no. 1, pp. 3876, 2019, doi: 10.1038/s41598-019-40598-3

[3] J. A. Rudd et al., “Solvent-free microwave-assisted synthesis of tenorite nanoparticle-decorated multi-walled carbon nanotubes”, J. Mater. Sci. Technol., vol. 35, no. 6, pp. 1121–1127, Jun. 2019, doi: 10.1016/j.jmst.2019.01.002

[4] Y. Liu, T. Jiang, C. Liu, W. Huang, J. Wang, and X. Xue, “Effect of microwave pre-treatment on the magnetic properties of Ludwigite and its implications on magnetic separation”, Metall. Res. Technol., vol. 116, no. 1, pp. 107, Dec. 2019, doi: 10.1051/metal/2018087

[5] D. Jhodkar, M. Amarnath, H. Chelladurai, and J. Ramkumar, “Experimental Investigations to Study the Effects of Microwave Treatment Strategy on Tool Performance in Turning Operation”, J. Mater. Eng. Perform., vol. 27, no. 12, pp. 6374–6388, 2018, doi: 10.1007/s11665-018-3742-7

[6] Ł. Zedler, M. Klein, M. R. Saeb, X. Colom, J. Cañavate, and K. Formela, “Synergistic Effects of Bitumen Plasticization and Microwave Treatment on Short-Term Devulcanization of Ground Tire Rubber”, Polymers (Basel)., vol. 10, no. 11, pp. 1265, Nov. 2018, doi: 10.3390/polym10111265

[7] H. Xiao, L. Lin, and F. Fu, “Temperature characteristics of wood during microwave treatments”, J. For. Res., vol. 29, no. 6, pp. 1815–1820, Nov. 2018, doi: 10.1007/s11676-018-0599-4

[8] S. S. Behera, S. K. Panda, D. Mandal, and P. K. Parhi, “Ultrasound and Microwave assisted leaching of neodymium from waste magnet using organic solvent”, Hydrometallurgy, vol. 185, pp. 61–70, May 2019, doi: 10.1016/j.hydromet.2019.02.003

[9] Y. Kang et al., “Microwave-constructed honeycomb architectures of h-BN/rGO nano-hybrids for efficient microwave conversion”, Compos. Sci. Technol., vol. 174, pp. 184–193, Apr. 2019, doi: 10.1016/j.compscitech.2019.02.029

[10] G. G. Morbioli, N. C. Speller, M. E. Cato, T. P. Cantrell, and A. M. Stockton, “Rapid and low-cost development of microfluidic devices using wax printing and microwave treatment”, Sensors Actuators B Chem., vol. 284, pp. 650–656, Apr. 2019, doi: 10.1016/j.snb.2018.12.053

[11] A. Banerji, L. Ananthanarayan, and S. S. Lele, “Dough browning inhibition of multigrain Indian flatbread (chapatti) using a combination of chemical and microwave treatment”, J. Food Meas. Charact., vol. 13, no. 1, pp. 807–820, Mar. 2019, doi: 10.1007/s11694-018-9993-z

[12] A. B. Mahdi and C. Gomes, “Effects of microwave radiation on micro-organisms in selected materials from healthcare waste”, Int. J. Environ. Sci. Technol., vol. 16, no. 3, pp. 1277–1288, Mar. 2019, doi: 10.1007/s13762-018-1741-8

[13] J. Wang, T. Jiang, Y. Liu, and X. Xue, “Influence of microwave treatment on grinding and dissociation characteristics of vanadium titano-magnetite”, Int. J. Miner. Metall. Mater., vol. 26, no. 2, pp. 160–167, Feb. 2019, doi: 10.1007/s12613-019-1720-1

[14] M. Liu, C. Li, and Q. Wang, “Microstructural Characteristics of Larch Wood Treated by High-intensity Microwave”, Bioresour. Vol 14, No 1, 2018

[15] J. Liu, C. Zhang, S. Guo, L. Xu, S. Xiao, and Z. Shen, “Microwave treatment of pre-oxidized fibers for improving their structure and mechanical properties”, Ceram. Int., vol. 45, no. 1, pp. 1379–1384, Jan. 2019, doi: 10.1016/j.ceramint.2018.08.311

[16] S. Singh, P. K. Jain, and Rizwan-uddin, “Analytical Solution for Three-Dimensional, Unsteady Heat Conduction in a Multilayer Sphere”, J. Heat Transfer, vol. 138, no. 10, Oct. 2016, doi: 10.1115/1.4033536