Vol. 41 No. 3 (2019): Boletín de Geología
Articles

Processing of synthetic data for the treatment of geoelectric information for hydrogeological purposes of the Málaga town, Santander (Colombia)

Jesús Leonardo Rincón-Jaimes
Universidad Industrial de Santander
Bio
Carlos Alberto Ríos-Reyes
Universidad Industrial de Santander
Bio
Carlos Alberto Chacón-Ávila
Universidad Nacional de Colombia
Bio
Luis Eduardo Moreno-Torres
Universidad Industrial de Santander
Bio

Published 2019-09-30

Keywords

  • Geophysical prospection,
  • Málaga,
  • water resources,
  • hydrogeology

How to Cite

Rincón-Jaimes, J. L., Ríos-Reyes, C. A., Chacón-Ávila, C. A., & Moreno-Torres, L. E. (2019). Processing of synthetic data for the treatment of geoelectric information for hydrogeological purposes of the Málaga town, Santander (Colombia). Boletín De Geología, 41(3), 145–161. https://doi.org/10.18273/revbol.v41n3-2019007

Altmetrics

Abstract

Málaga town presents a serious problem caused by the insufficient environmental offer of the superficial water resource to supply the dotation corresponding to the needs of the urban area. Although the geographic and geological location generates optimal conditions for the occurrence of groundwater, studies on the existence, location and availability are incomplete and fragmented, and in general, there is no information about the hidryc resource. The main objective of the present paper pretends to build through the applied geophysical prospection Vertical Electric Sounding (VES) and Electrical Resistivity Tomography (ERT) the 2D model of electrical resistivity of the subsurface, from the processing of synthetic data to the treatment of geoelectrical information with hydrogeological purposes. The data acquisition and processing allowed the interpretation, from the geoelectric point of view and the basic analysis of the 1D profiles and the 2D models developed; demonstrating the presence of highly fractured aquifers that can provide the municipal supply in the future; results that establish the first step in the evaluation of Málaga’s water resources.

Downloads

Download data is not yet available.

References

AGI. (2009). Instruction manual for EarthImager 2D. Version 2.4.0. Resistivity and IP Inversion Software. Advanced Geosciences Inc.

Alcaldía municipal de Málaga. (2015). Esquema de Ordenamiento Territorial, Málaga (Santander). Colombia.

Alcaldía municipal de San José de Miranda. (2003). Esquema de Ordenamiento Territorial, San José de Miranda (Santander). Colombia.

Asfahani, J. (2007). Geoelectrical investigation for characterizing the hydrogeological conditions in semi-arid region in Khanasser valley, Syria. Journal of Arid Environments, 68(1), 31-52. doi: 10.1016/j.jaridenv.2006.03.028.

Befus, K., Cardenas, M., Tait, D., and Erler, D. (2014). Geoelectrical signals of geologic and hydrologic processes in a fringing reef lagoon setting. Journal of Hydrology, 517, 508-520. doi: 10.1016/j.jhydrol.2014.05.070.

Bobachev, A., Modin, I., and Shevnin, V. (2000). IPI2Win user´s guide. Moscow State University, Moscov, Russia.

Chirindjal, F., Dahlin, T., Pertuu, N., Steinbruch, F., and Owen, R. (2016). Combined electrical resistivity tomography and magnetic resonance sounding investigation of the surface-water/groundwater interaction in the Urema Graben, Mozambique. Hydrogeology Journal, 24(6), 1583-1592. doi: 10.1007/s10040-016-1422-y

Díaz, E. (2010). Implementación del código ZONDRES2D para la modelación directa e inversa de datos de tomografía de resistividad eléctrica 2D. Tesis, Universidad Nacional Autónoma de México, México.

FAO. (2016). AQUASTAT. Uso del agua. Discusión temática. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Consultado el 01 de agosto del 2017. http://www.fao.org/NR/ WATER/aquastat/water_use/indexesp.stm.

Hernández, F. (2012). Inversión conjunta de dispersión de ondas superficiales y sondeos geoeléctricos de corriente directa. M.Sc. Tesis, Centro de investigación científica y de educación superior de Ensenada, México.

Kumar, D. (2012). Efficacy of electrical resistivity tomography technique in mapping shallow subsurface anomaly. Journal of the Geological Society of India, 80(3), 304-307. doi: 10.1007/ s12594-012-0148-2.

Loke, M. (2012). Tutorial: 2-D and 3-D electrical imaging surveys. Malaysia: Geotomo Software.

Loke, M., and Barker, R. (1995). Least-squares deconvolution of apparent resistivity pseudosections. Geophysics, 60(6), 1682-1690. doi: 10.1190/1.1443900.

Mahmoud, H., and Tawfik, M. (2015). Impact of the geologic setting on the groundwater using geoelectrical sounding in the area southwest of Sohag – Upper Egypt. Journal of African Earth Sciences, 104, 6-18. doi: 10.1016/j. jafrearsci.2015.01.004.

Mohamaden, M. (2016). Delineating groundwater aquifer and subsurface structures by using geoelectrical data: Case study (Dakhla Oasis, Egypt). NRIAG Journal of Astronomy and Geophysics, 5(1), 247-253. doi: 10.1016/j. nrjag.2016.05.001.

Salamanca, M. (2017). Caracterización del subsuelo mediante prospección geofísica de resistividades (Tomografía de Resistividad Eléctrica “TRE” y Sondeos Eléctricos Verticales “SEV’s”) con fines hidrogeológicos en la sede de Málaga de la Universidad Industrial de Santander (UIS). Tesis, Universidad Industrial de Santander, Bucaramanga, Colombia.

Tarazona, J., y Rueda, N. (2018). Estudio para la prospección de aguas subterráneas en la zona urbana y perimetral del municipio de Málaga, Santander. Tesis, Universidad Industrial de Santander, Bucaramanga, Colombia.

UAF. (2018). Nasa Earth Data University of Alaska – Fairbanks. Vertex: Alaska Satellite Facility Data Portal. V3. 04 – 55. Consulted in August 1st 2017. https://vertex.daac.asf.alaska.edu/.

Vargas, R., Arias, T., Jaramillo, L., y Téllez, N. (1976). Geología de la plancha 136 Málaga. Cuadrángulo I-13. Escala 1:100.000. INGEOMINAS, Informe N° 1712.