Una caracterización de funciones inducibles entre hiperespacios

  • José G. Anaya Universidad Autónoma del Estado de México
  • David Maya Universidad Autónoma del Estado de México
  • Fernando Orozco Zitli Universidad Autónoma del Estado de México

Resumen

Dados dos hiperespacios fijos H(X) y H(Y ) de continuos métricos X y Y , respectivamente, una función continua g : H(X) → H(Y ) es inducible si existe una función continua f : X → Y tal que g(A) = {f(a) : a ∈ A}, para cada A ∈ H(X). En este trabajo presentamos una caracterización de funciones inducibles entre hiperespacios, la comparamos con las condiciones necesarias y suficientes bajo las cuales una función continua entre hiperespacios es inducible, dada por J.J. Charatonik y W.J. Charatonik en 1998, y damos ejemplos que muestran la independencia entre las condiciones en ambas caracterizaciones en todos los hiperespacios, algunos de ellos no habían sido considerados en la caracterización ya conocida, haciendo completo el estudio de esta clase de funciones continuas.

Palabras clave: Continuo, función inducible, función inducida, hiperespacio

Descargas

La descarga de datos todavía no está disponible.

Referencias

Charatonik J.J., “Recent research in hyperspace theory”, Extracta Math. 18 (2003), No. 2, 235-262.

Charatonik J.J. and Charatonik W.J., “Inducible mappings between hyperspaces”, Bull. Pol. Acad. Sci. Math. 46 (1998), No. 1, 5-9.

Charatonik J.J., Illanes A. and Macías S., “Induced mapping on the hyperspaces Cn(X) of a continuum X”, Houston J. Math. 28 (2002), No. 4, 781-805.

Illanes A. and Nadler, S.B.Jr., Hyperspaces: Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Math., Vol. 216, Marcel Dekker, Inc., New York, 1999.

Michael E., “Topologies on spaces of subsets”, Trans. Amer. Math. Soc. 71 (1951), 152-182. doi: 10.1090/s0002-9947-1951-0042109-4
Publicado
2020-11-20