Revista Integración, temas de matemáticas.
Vol. 36 Núm. 2 (2018): Revista Integración, temas de matemáticas
Artículos científicos

Reseña de la búsqueda de hacer agujeros

José G. Anaya
Universidad Autónoma del Estado de México, Facultad de Ciencias, Toluca, México.
David Maya
Universidad Autónoma del Estado de México, Facultad de Ciencias, Toluca, México.
Alejandro Fuentes-Montes de Oca
Universidad Autónoma del Estado de México, Facultad de Ciencias, Toluca, México.

Publicado 2018-12-12

Palabras clave

  • Continuo,
  • hiperespacios,
  • propiedad b),
  • unicoherencia,
  • cono,
  • suspensión
  • ...Más
    Menos

Cómo citar

Anaya, J. G., Maya, D., & Fuentes-Montes de Oca, A. (2018). Reseña de la búsqueda de hacer agujeros. Revista Integración, Temas De matemáticas, 36(2), 101–116. https://doi.org/10.18273/revint.v36n2-2018003

Resumen

Un espacio topológico conexo Z es unicoherente si para cualesquiera A y B cerrados y conexos de Z, tales que   Z = A ∪ B, se tiene que A ∩ B es conexa. Sea Z un espacio unicoherente: decimos que z ∈ Z agujera a Z si Z − {z} no es unicoherente. Un problema de reciente estudio es: dado un espacio topológico unicoherente H(Z), obtenido de un espacio topológico Z, ¿cuáles elementos A ∈ H(Z) lo agujerean? Este trabajo consiste en dar una reseña de los resultados que hasta la fecha se conocen de este problema.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Anaya J.G., “Making holes in hyperspaces”, Topology Appl. 154 (2007), 2000–2008.

[2] Anaya J.G., “Making holes in the hyperspaces of a Peano continuum”, Topology Proc. 37 (2011), 1–14.

[3] Anaya J.G., Carranza R.I., Maya D. and Orozco-Zitli F., “Making holes in the hyperspace of subcontinua of smooth dendroids”, Preprint.

[4] Anaya J.G., Castañeda-Alvarado E. and Orozco-Zitli F., “Making holes in the hyperspace of subcontinua of some continua”, Adv. in Pure Math. 2 (2012), 133–138.

[5] Anaya J.G., Castañeda-Alvarado E., Fuentes-Montes de Oca A. and Orozco-Zitli F., “Making holes in the cone, suspension and hyperspaces of some continua”, Comment. Math. Univ. Carolin. 59 (2018), No. 3, 343–364.

[6] Anaya J.G., Castañeda-Alvarado E., Fuentes-Montes de Oca A. and Orozco-Zitli F., “Making holes in the hyperspaces suspension of some continua”, Preprint.

[7] Anaya J.G., Maya D. y Orozco-Zitli F., “Agujeros en el segundo producto simétrico de subcontinuos del continuo Figura 8”, CIENCIA ergo–sum 17 (2010), No. 3, 307–312.

[8] Anaya J.G., Maya D. and Orozco-Zitli F., “Making holes in the second symmetric products of a cyclicly connected graph”, Journal of Mathematics Research 6 (2014), No. 3, 105–113.

[9] Anaya J.G., Maya D. and Orozco-Zitli F., “Making holes in the second symmetric products of dendrites and some fan”, CIENCIA ergo–sum 19 (2012), No.1, 83–92.

[10] Anaya J.G., Maya D. and Orozco-Zitli F., “Making holes in the second symmetric product of unicoherent locally connected continua”, Topology Proc. 48 (2016), 251–259.

[11] Borsuk K., “Quelques théorémes sur les ensembles unicoherents”, Fund. Math. 17 (1931), No.1, 171–209.

[12] Castañeda E., “A Unicoherent Continuum Whose Second Symmetric Product is not Unicoherent”, Topology Proc. 23 (1998), 61–67.

[13] Eilenberg S., “Sur les transformations d’espaces métriques en circonférence”, Fund. Math. 24 (1935), No.1, 160–176.

[14] Eilenberg S., “Transformations continues en circonférence et la topologie du plan”, Fund. Math. 26 (1936), No. 1, 61–112.

[15] Ganea T., “Covering spaces and cartesian products”, Ann. Soc. Polon. Math. 25 (1952), 30–42.

[16] Ganea T., “Symmetrische Potenzen topologischer Raume”, Math. Nachr. 11 (1954), No. 4-5, 305–316.

[17] García-Máynez A. and Illanes A., “A survey on unicoherence and related properties”, An. Inst. Mat., Univ. Nac. Autón. Méx. 29 (1989), 17–67.

[18] Illanes A., “Multicoherence of Whitney levels”, Topology Appl. 68 (1996), No.3, 251–265.

[19] Illanes A., “The hyperspace C2(X) for a finite graph X is unique”, Glas. Mat. Ser. III 37 (2002), 347–363.

[20] Illanes A. and Nadler S. B., Jr., Hyperspaces, Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, New York, 1999.

[21] Kuratowski K., “Sur les continus de Jordan et le théoréme de M. Brouwer”, Fund. Math. 8 (1926), No. 1, 137–150.

[22] Kuratowski K., “Une carecterisation topologique de la surface de la sphére”, Fund. Math. 13 (1929), No. 1, 307–318.

[23] Macías S., “On symmetric products of continua”, Topology Appl. 92 (1999), No. 2, 173–182.

[24] Macías S., “On the hyperspaces Cn(X) of a continuum X”, Topology Appl. 109 (2001), 237–256.

[25] Mardešić S., “Equivalence of singular and Čech homology for ANR-s. Application to unicoherence”, Fund. Math. 46 (1958), No. 1, 29–45.

[26] Nadler Jr. S.B., “Arc components of certain chainable continua”, Canad. Math. Bull. 14 (1971), 183–189.

[27] Nadler Jr. S.B., Continuum Theory, An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992.

[28] Nadler Jr. S.B., “Continua whose cone and hyperspace are homeomorphic”, Trans. Amer. Math. Soc. 230 (1977), 321–345.

[29] Nadler Jr. S.B., Hyperspace of sets, Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, New York, 1978.

[30] Whyburn G.T., Analytic Topology, AMS Colloquium Publications, 28, Providence, R.I., 1942.