Revista Integración, temas de matemáticas.
Vol. 42 Núm. 2 (2024): Revista Integración, temas de matemáticas
Artículos científicos

Algunas caracterizaciones de la estructura interna de niveles de Whintey

David Maya
Universidad Autónoma del Estado de México

Publicado 2024-11-14

Palabras clave

  • Aposindesis,
  • conexidad colocal,
  • continuo descomponible,
  • continuo de Wilder,
  • hiperespacio de los subcontinuos,
  • irreducibilidad,
  • niveles de Whitney
  • ...Más
    Menos

Cómo citar

Maya, D. (2024). Algunas caracterizaciones de la estructura interna de niveles de Whintey. Revista Integración, Temas De matemáticas, 42(2), 55–65. https://doi.org/10.18273/revint.v42n2-2024004

Resumen

Sea X un continuo. Denotamos por C(X) al hiperespacio de todos los subcontinuos de X. Se sabe que existen funciones continuas
monótonas μ desde C(X) hacia [0, ∞) tales que μ({x}) = 0, y si A es un subcontinuo propio de B, entonces μ(A) < μ(B). Los subcontinuos μ−1(t) de C(X) son llamados niveles de Whitney. In este artículo, por medio de una clase de subconjuntos cerrados de X se caracterizan los niveles de Whitney que poseen alguna de las siguientes propiedades: ser irreducible, ser descomponible, aposindético, semiaposindético, aposindético con respecto a conjuntos finitos, ser colocalmente conexo.

Descargas

Referencias

  1. Camargo J. and Macías S., “On Wilder, strongly Wilder, continuumwise Wilder, D, D∗, and D∗∗ continua”, Bull. Malays. Math. Sci. Soc., 47 (2024), No. 3, 95-13. doi: 10.1007/s40840-024-01688-2
  2. Camargo J., Maya D. and Pellicer-Covarrubias P., “Noncut subsets of the hyperspace of subcontinua”, Topology Appl., 305 (2022), 107867-18. doi: 10.1016/j.topol.2021.107867
  3. Capulín F., Maya D. and Rios O. I., “Points on the edge of Whitney levels”, preprint.
  4. Espinoza B. and Matsuhashi E., “D-continua, D∗-continua, and Wilder continua”, Topology Appl., 285 (2020), 107393-25. doi: 10.1016/j.topol.2020.107393
  5. Goodykoontz Jr. J. T., “More on connectedness im kleinen and local connectedness in C(X)”, Proc. Amer. Math. Soc., 65 (1977), No. 2, 357-364. doi: 10.2307/2041923
  6. Hughes C. B., “Some properties of Whitney continua in the hyperspace C(X)”, Topology Proceedings, Alabama, USA, 1, 209-219, 1976.
  7. Illanes A. and Nadler Jr. S. B.,Hyperspaces: Fundamentals and Recent Advances, CRC Press, 1999.
  8. Imamura H., Matsuhashi E. and Oshima Y., “Some theorems on decomposable continua”, Topology Appl., 343 (2024), 108794-14. doi: 10.1016/j.topol.2023.108794
  9. Kelley J. L., “Hyperspaces of a continuum”, Trans. Amer. Math. Soc., 52 (1942), 22-36. doi: 10.2307/1990151
  10. Macías S., Set function T . An account on F. B. Jones’ contributions to topology, Springer Nature, vol. 67, 2021. doi: 10.1007/978-3-030-65081-0
  11. Matsuhashi E. and Oshima Y., “Some decomposable continua and Whitney levels of their hyperspaces”, Topology Appl., 326 (2023), 108395-9. doi: 10.1016/j.topol.2022.108395
  12. Rogers, Jr. J. T., “Whitney continua in the hyperspace C(X)”, Pacific J. Math., 58 (1975), No. 2, 569-584. doi: 10.2140/pjm.1975.58.569
  13. Whitney H., “Regular families of curves. I”, Proc. Natl. Acad. Sci. USA, 18 (1932), No. 3, 275-278. doi: 10.1073/pnas.18.3.275
  14. Whitney H., “Regular families of curves. II”, Proc. Natl. Acad. Sci. USA, 18 (1932), No. 4, 340-342. doi: 10.1073/pnas.18.4.340