Revista Integración, temas de matemáticas.
Vol. 40 Núm. 2 (2022): Revista Integración, temas de matemáticas
Artículos científicos

Desigualdades determinantes para matrices definidas positivas a través de desigualdades young aditivas y multiplicativas

Silvestru Sever Dragomir
Victoria University

Publicado 2022-12-09

Palabras clave

  • Matrices definidas positivas,
  • Determinantes,
  • Desigualdades

Cómo citar

Dragomir, S. S. (2022). Desigualdades determinantes para matrices definidas positivas a través de desigualdades young aditivas y multiplicativas. Revista Integración, Temas De matemáticas, 40(2), 193–206. https://doi.org/10.18273/revint.v40n2-2022004

Resumen

En este trabajo demostramos entre otros que, si las matrices definidas positivas A, B de orden n satisface la condición < mIn ≤ B −A ≤ M In, para algunas constantes 0 < m < M, donde In es la matriz identidad, entonces
0 ≤ (1 − t) [det (A)]−1 + t [det (A + mIn)]−1 − [det (A + mtIn)]−1
≤ (1 − t) [det (A)]−1 + t [det (B)]−1 − [det ((1 − t) A + tB)]−1
≤ (1 − t) [det (A)]−1 + t [det (A + M In)]−1 − [det (A + M tIn)]−1,
para todo t ∈ [0, 1].

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Beckenbach E. F. and Bellman R., Inequalities, Berlin-Heidelberg-New York, 1971.
  2. Bhatia R., ’Interpolating the arithmetic–geometric mean inequality and its operator version’, Lin. Alg. Appl. 413 (2006) 355–363.
  3. Kittaneh F. and Manasrah Y., "Improved Young and Heinz inequalities for matrix", J. Math. Anal. Appl. 361 (2010), 262-269.
  4. Kittaneh F. and Manasrah Y., "Reverse Young and Heinz inequalities for matrices", Lin. Multilin. Alg., 59 (2011), 1031-1037.
  5. Li Y., Yongtao L., Huang Feng Z.and Liu W., "Inequalities regarding partial trace and partial determinant". Math. Inequal. Appl. 23 (2020), no. 2, 477–485
  6. Lin M. and Sinnamon G., "Revisiting a sharpened version of Hadamard’s determinant inequality". Linear Algebra Appl. 606 (2020), 192–200.
  7. Liu J.-T., Wang Q.-W.and Sun F.-F., "Determinant inequalities for Hadamard product of positive definite matrices". Math. Inequal. Appl. 20 (2017), no. 2, 537–542.
  8. Luo W., "Further extensions of Hartfiel’s determinant inequality to multiple matrices". Spec. Matrices 9 (2021), 78–82.
  9. Ito M., "Estimations of the weighted power mean by the Heron mean and related inequalities for determinants and traces". Math. Inequal. Appl. 22 (2019), no. 3, 949–966.
  10. Mirsky L., "An inequality for positive definite matricies", Amer. Math. Monthly, 62 (1955), 428-430.
  11. Mitrinović D. S., Pečarić J. E. and Fink A.M., Classical and New Inequalities in Analysis, Kluwer Acedemi Publishers, 1993.