Determinant Inequalities for Positive Definite Matrices Via Additive and Multiplicative Young Inequalities
Published 2022-12-09
Keywords
- Positive definite matrices,
- Determinants,
- Inequalities
How to Cite
Copyright (c) 2022 Revista Integración, temas de matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
In this paper we prove among others that, if the positive definite matrices A, B of order n satisfy the condition 0 < mIn ≤ B − A ≤ M In, for some constants 0 < m < M, where In is the identity matrix, then
0 ≤ (1 − t) [det (A)]−1 + t [det (A + mIn)]−1 − [det (A + mtIn)]−1
≤ (1 − t) [det (A)]−1 + t [det (B)]−1 − [det ((1 − t) A + tB)]−1
≤ (1 − t) [det (A)]−1 + t [det (A + M In)]−1 − [det (A + M tIn)]−1 ,
for all t ∈ [0, 1].
Downloads
References
- Beckenbach E. F. and Bellman R., Inequalities, Berlin-Heidelberg-New York, 1971.
- Bhatia R., ’Interpolating the arithmetic–geometric mean inequality and its operator version’, Lin. Alg. Appl. 413 (2006) 355–363.
- Kittaneh F. and Manasrah Y., "Improved Young and Heinz inequalities for matrix", J. Math. Anal. Appl. 361 (2010), 262-269.
- Kittaneh F. and Manasrah Y., "Reverse Young and Heinz inequalities for matrices", Lin. Multilin. Alg., 59 (2011), 1031-1037.
- Li Y., Yongtao L., Huang Feng Z.and Liu W., "Inequalities regarding partial trace and partial determinant". Math. Inequal. Appl. 23 (2020), no. 2, 477–485
- Lin M. and Sinnamon G., "Revisiting a sharpened version of Hadamard’s determinant inequality". Linear Algebra Appl. 606 (2020), 192–200.
- Liu J.-T., Wang Q.-W.and Sun F.-F., "Determinant inequalities for Hadamard product of positive definite matrices". Math. Inequal. Appl. 20 (2017), no. 2, 537–542.
- Luo W., "Further extensions of Hartfiel’s determinant inequality to multiple matrices". Spec. Matrices 9 (2021), 78–82.
- Ito M., "Estimations of the weighted power mean by the Heron mean and related inequalities for determinants and traces". Math. Inequal. Appl. 22 (2019), no. 3, 949–966.
- Mirsky L., "An inequality for positive definite matricies", Amer. Math. Monthly, 62 (1955), 428-430.
- Mitrinović D. S., Pečarić J. E. and Fink A.M., Classical and New Inequalities in Analysis, Kluwer Acedemi Publishers, 1993.