Revista Integración, temas de matemáticas.
Vol. 32 Núm. 2 (2014): Revista Integración, temas de matemáticas
Artículo Original

Métricas rotacionalmente invariantes y el problema de Steklov

Óscar Andrés Montaño Carreño
Universidad del Valle

Publicado 2014-10-30

Palabras clave

  • Valor propio de Steklov,
  • métrica rotacionalmente invariante,
  • curvatura de Ricci

Cómo citar

Montaño Carreño, Óscar A. (2014). Métricas rotacionalmente invariantes y el problema de Steklov. Revista integración, Temas De matemáticas, 32(2), 117–128. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4376

Resumen

Bajo condiciones en el signo de la curvatura de Ricci, encontramos cotas para el primer valor propio de Steklov en una bola n-dimensional dotada con una métrica rotacionalmente invariante.

Para citar este artículo: O.A. Montaño Carreño, Métricas rotacionalmente invariantes y el problema de Sketlov, Rev. Integr. Temas Mat. 32 (2014), no. 2, 117-128.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Bramble J.H. and Payne L.E., “Bounds in the Neumann problem for second order uniformly elliptic operators”, Pacific J. Math. 12 (1962), 823-833.
  2. Escobar J.F., “Topics in PDE’s and Differential Geometry”, in XII Escola de Geometria Diferencial, Goiania (Ed. da UFG), (2002), 88 p.
  3. Escobar J.F., “The geometry of the first non-zero Stekloff eigenvalue”, J. Funct. Anal. 150 (1997), no. 2, 544-556.
  4. Escobar J.F., “An isoperimetric inequality and the first Steklov eigenvalue”, J. Funct. Anal. 165 (1999), no. 1, 101-116.
  5. Escobar J.F., “A comparison theorem for the first non-zero Steklov eigenvalue”, J. Funct. Anal. 178 (2000), no. 1, 143-155.
  6. Escobar J.F., “The Yamabe problem on manifolds with boundary”, J. Differential Geom. 35 (1992), no. 1, 21-84.
  7. Escobar J.F., “Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary”, Ann. of Math. (2) 136 (1992), no. 1, 1-50.
  8. Ilias S. and Makhoul O., “A Reilly inequality for the first Steklov eigenvalue”, Differential Geom. Appl. 29 (2011), no. 5, 699-708.
  9. Kuttler J.R. and Sigillito V.G., “Lower bounds for Stekloff and free membrane eigenvalues”, SIAM Review 10 (1968), 368-370.
  10. Montaño O.A., “The Stekloff problem for rotationally invariant metrics on the ball”, Rev. Colombiana Mat. 47 (2013), no. 2, 181-190.
  11. Montaño O.A., “Cota superior para el primer valor propio del problema de Steklov”, 31 (2013), no. 1, 53-58.
  12. Payne L.E., “Some isoperimetric inequalities for harmonic functions”, SIAM J. Math. Anal. 1 (1970), 354-359.
  13. Steklov V.A., “Sur les problemes fondamentaux de la physique mathematique”, Ann. Sci. École Norm 19 (1902), 445-490.
  14. Weinstock R., “Inequalities for a classical eigenvalue problem”, J. Rational Mech. Anal. 3 (1954), 745-753.
  15. Wang Q. and Xia C., “Sharp bounds for the first non-zero Steklov eigenvalues”, J. Funct. Anal 257 (2009), no. 9, 2635-2644.
  16. Xia C. and Wang Q., “Inequalities for the Steklov eigenvalues”, Chaos Solitons Fractals 48 (2013), 61-67.
  17. Xia C., “Rigidity of compact manifolds with boundary and nonnegative Ricci curvature”, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1801-1806.