Research and Innovation Articles
Rotationally invariant metrics and the Steklov problem
Published 2014-10-30
Keywords
- Steklov eigenvalue,
- rotationally invariant metric,
- Ricci curvature
How to Cite
Montaño Carreño, Óscar A. (2014). Rotationally invariant metrics and the Steklov problem. Revista Integración, Temas De matemáticas, 32(2), 117–128. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4376
Abstract
Under conditions on the sign of the Ricci curvature, we find bounds for the first Steklov eigenvalue, in a n-dimensional ball endowed with a rotationally invariant metric.
To cite this article: O.A. Montaño Carreño, Métricas rotacionalmente invariantes y el problema de Sketlov, Rev. Integr. Temas Mat. 32 (2014), no. 2, 117-128.Downloads
Download data is not yet available.
References
- Bramble J.H. and Payne L.E., “Bounds in the Neumann problem for second order uniformly elliptic operators”, Pacific J. Math. 12 (1962), 823-833.
- Escobar J.F., “Topics in PDE’s and Differential Geometry”, in XII Escola de Geometria Diferencial, Goiania (Ed. da UFG), (2002), 88 p.
- Escobar J.F., “The geometry of the first non-zero Stekloff eigenvalue”, J. Funct. Anal. 150 (1997), no. 2, 544-556.
- Escobar J.F., “An isoperimetric inequality and the first Steklov eigenvalue”, J. Funct. Anal. 165 (1999), no. 1, 101-116.
- Escobar J.F., “A comparison theorem for the first non-zero Steklov eigenvalue”, J. Funct. Anal. 178 (2000), no. 1, 143-155.
- Escobar J.F., “The Yamabe problem on manifolds with boundary”, J. Differential Geom. 35 (1992), no. 1, 21-84.
- Escobar J.F., “Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary”, Ann. of Math. (2) 136 (1992), no. 1, 1-50.
- Ilias S. and Makhoul O., “A Reilly inequality for the first Steklov eigenvalue”, Differential Geom. Appl. 29 (2011), no. 5, 699-708.
- Kuttler J.R. and Sigillito V.G., “Lower bounds for Stekloff and free membrane eigenvalues”, SIAM Review 10 (1968), 368-370.
- Montaño O.A., “The Stekloff problem for rotationally invariant metrics on the ball”, Rev. Colombiana Mat. 47 (2013), no. 2, 181-190.
- Montaño O.A., “Cota superior para el primer valor propio del problema de Steklov”, 31 (2013), no. 1, 53-58.
- Payne L.E., “Some isoperimetric inequalities for harmonic functions”, SIAM J. Math. Anal. 1 (1970), 354-359.
- Steklov V.A., “Sur les problemes fondamentaux de la physique mathematique”, Ann. Sci. École Norm 19 (1902), 445-490.
- Weinstock R., “Inequalities for a classical eigenvalue problem”, J. Rational Mech. Anal. 3 (1954), 745-753.
- Wang Q. and Xia C., “Sharp bounds for the first non-zero Steklov eigenvalues”, J. Funct. Anal 257 (2009), no. 9, 2635-2644.
- Xia C. and Wang Q., “Inequalities for the Steklov eigenvalues”, Chaos Solitons Fractals 48 (2013), 61-67.
- Xia C., “Rigidity of compact manifolds with boundary and nonnegative Ricci curvature”, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1801-1806.