Revista Integración, temas de matemáticas.
Vol. 39 No. 2 (2021): Revista Integración, temas de matemáticas
Research and Innovation Articles

A new proof for a Özban conjecture

Aníbal Coronel
Universidad del Bío-Bío, Departamento de Ciencias Básicas, Chillán, Chile.
Esperanza Lozada
Universidad del Bío-Bío, Departamento de Ciencias Básicas, Chillán, Chile.

Published 2021-09-27

Keywords

  • Laub-Ilani inequality,
  • trigonometric inequality,
  • algebraictrigonometric inequality,
  • power-exponential inequality

How to Cite

Coronel, A., & Lozada, E. (2021). A new proof for a Özban conjecture. Revista Integración, Temas De matemáticas, 39(2), 129–135. https://doi.org/10.18273/revint.v39n2-2021001

Abstract

In this paper, we present an elementary short proof of the following algebraic-trigonometric inequality of Laub-Ilani type: cos(xy)+cos(yx) ≥ cos(xx) + cos(yy) for x, y ∈ [0, π/2] which was conjectured by Özban [‘New algebraic-trigonometric inequalities of Laub-Ilani type’, Bull. Aust. Math. Soc. 96 (2017), 87–97] and recently proved by Matejíčka [‘Proof of one open inequality of Laub-Ilani type’, Journal of Mathematical Inequalities, 14 (2020), 83–98]. The proof is based on the properties of the power-exponential and trigonometric functions.

Downloads

Download data is not yet available.

References

  1. Cîrtoaje V., “Proofs of three open inequalities with power-exponential functions”, J. Non-linear Sci. Appl., 4 (2011), No. 2, 130–137. doi: 10.22436/jnsa.004.02.05.
  2. Cîrtoaje V., “On some inequalities with power-exponential functions”, J. Inequal. PureAppl. Math., 10 (2009), No. 1, 1–6.
  3. Coronel A. and Huancas F., “The proof of three power-exponential inequalities”, J. Inequal. Appl., 509 (2014), No. 1, 1–10. doi: 10.1186/1029-242X-2014-509.
  4. Coronel A., Kórus P., Lozada E., and Irazoqui E., “On the Generalization for Some Power Exponential-Trigonometric Inequalities”, Mathematics., 7 (2019), No. 10, 1–6. doi:10.3390/math7100988.
  5. Laub M. and Ilani I., “A subtle inequality”, Amer. Math. Monthly., 97 (1990), 65–67.
  6. Laub M., “Elementary Problems: E3111-E3116”, Amer. Math. Monthly., 92 (1985), 666.doi: 10.2307/2323718.
  7. Matejíčka L., “Solution of one conjecture on inequalities with power-exponential functions”, J. Inequal. Pure Appl. Math., 10 (2009), No. 3, 1–5.
  8. Matejíčka L., “Some remarks on Cîrtoaje’s conjecture”, J. Inequal. Appl., 269 (2016), No.1, 1–11. doi: 10.1186/s13660-016-1211-0.
  9. Matejíčka L., “On the Cîrtoaje’s conjecture”, J. Inequal. Appl., 152 (2016), No. 1, 1–6. doi:10.1186/s13660-016-1092-2.
  10. Matejíčka L., “Next generalization of Cîrtoaje’s inequality”, J. Inequal. Appl., 159 (2017), No. 1, 1–10. doi: 10.1186/s13660-017-1436-6.
  11. Matejíčka L., “Proof of one open inequality of Laub-Ilani type”, Journal of Mathematical Inequalities., 14 (2020), No. 1, 83–98. doi: 10.7153/jmi-2020-14-07.
  12. Miyagi M. and Nishizawa Y., “A short proof of an open inequality with power-exponential functions”, Aust. J. Math. Anal. Appl., 11 (2014), No. 1, 1–6.
  13. Miyagi M. and Nishizawa Y., “Extension of an inequality with power exponential functions”, Tamkang J. Math., 46 (2015), No. 4, 427–433. doi: 10.5556/j.tkjm.46.2015.1831.
  14. Miyagi M. and Nishizawa Y., “A stronger inequality of Cîrtoaje’s one with power exponential functions”, J. Nonlinear Sci. Appl., 8 (2015), No. 3, 224–230. doi: 10.22436/jn-sa.008.03.06.
  15. Özban A., “New algebraic-trigonometric inequalities of Laub-Ilani type”, Bull. Aust. Math. Soc., 96 (2017), No. 1, 87–97. doi: 10.1017/S0004972717000156.
  16. Qi F. and Debnath L., “Inequalities of power-exponential functions”, J. Inequal. Pure Appl. Math., 1 (2000), No. 2, 1–5.
  17. Zeikii A., Cirtoaje V. and Berndt W., Math links. Forum, http://www.mathlinks.ro/Forum/viewtopic.php?t=118722. [cited 11 November 2006].