Published 2021-09-27
Keywords
- Laub-Ilani inequality,
- trigonometric inequality,
- algebraictrigonometric inequality,
- power-exponential inequality
How to Cite
Copyright (c) 2021 Revista Integración, temas de matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
In this paper, we present an elementary short proof of the following algebraic-trigonometric inequality of Laub-Ilani type: cos(xy)+cos(yx) ≥ cos(xx) + cos(yy) for x, y ∈ [0, π/2] which was conjectured by Özban [‘New algebraic-trigonometric inequalities of Laub-Ilani type’, Bull. Aust. Math. Soc. 96 (2017), 87–97] and recently proved by Matejíčka [‘Proof of one open inequality of Laub-Ilani type’, Journal of Mathematical Inequalities, 14 (2020), 83–98]. The proof is based on the properties of the power-exponential and trigonometric functions.
Downloads
References
- Cîrtoaje V., “Proofs of three open inequalities with power-exponential functions”, J. Non-linear Sci. Appl., 4 (2011), No. 2, 130–137. doi: 10.22436/jnsa.004.02.05.
- Cîrtoaje V., “On some inequalities with power-exponential functions”, J. Inequal. PureAppl. Math., 10 (2009), No. 1, 1–6.
- Coronel A. and Huancas F., “The proof of three power-exponential inequalities”, J. Inequal. Appl., 509 (2014), No. 1, 1–10. doi: 10.1186/1029-242X-2014-509.
- Coronel A., Kórus P., Lozada E., and Irazoqui E., “On the Generalization for Some Power Exponential-Trigonometric Inequalities”, Mathematics., 7 (2019), No. 10, 1–6. doi:10.3390/math7100988.
- Laub M. and Ilani I., “A subtle inequality”, Amer. Math. Monthly., 97 (1990), 65–67.
- Laub M., “Elementary Problems: E3111-E3116”, Amer. Math. Monthly., 92 (1985), 666.doi: 10.2307/2323718.
- Matejíčka L., “Solution of one conjecture on inequalities with power-exponential functions”, J. Inequal. Pure Appl. Math., 10 (2009), No. 3, 1–5.
- Matejíčka L., “Some remarks on Cîrtoaje’s conjecture”, J. Inequal. Appl., 269 (2016), No.1, 1–11. doi: 10.1186/s13660-016-1211-0.
- Matejíčka L., “On the Cîrtoaje’s conjecture”, J. Inequal. Appl., 152 (2016), No. 1, 1–6. doi:10.1186/s13660-016-1092-2.
- Matejíčka L., “Next generalization of Cîrtoaje’s inequality”, J. Inequal. Appl., 159 (2017), No. 1, 1–10. doi: 10.1186/s13660-017-1436-6.
- Matejíčka L., “Proof of one open inequality of Laub-Ilani type”, Journal of Mathematical Inequalities., 14 (2020), No. 1, 83–98. doi: 10.7153/jmi-2020-14-07.
- Miyagi M. and Nishizawa Y., “A short proof of an open inequality with power-exponential functions”, Aust. J. Math. Anal. Appl., 11 (2014), No. 1, 1–6.
- Miyagi M. and Nishizawa Y., “Extension of an inequality with power exponential functions”, Tamkang J. Math., 46 (2015), No. 4, 427–433. doi: 10.5556/j.tkjm.46.2015.1831.
- Miyagi M. and Nishizawa Y., “A stronger inequality of Cîrtoaje’s one with power exponential functions”, J. Nonlinear Sci. Appl., 8 (2015), No. 3, 224–230. doi: 10.22436/jn-sa.008.03.06.
- Özban A., “New algebraic-trigonometric inequalities of Laub-Ilani type”, Bull. Aust. Math. Soc., 96 (2017), No. 1, 87–97. doi: 10.1017/S0004972717000156.
- Qi F. and Debnath L., “Inequalities of power-exponential functions”, J. Inequal. Pure Appl. Math., 1 (2000), No. 2, 1–5.
- Zeikii A., Cirtoaje V. and Berndt W., Math links. Forum, http://www.mathlinks.ro/Forum/viewtopic.php?t=118722. [cited 11 November 2006].