Revista Integración, temas de matemáticas.
Vol. 41 No. 2 (2023): Revista Integración, temas de matemáticas
Research and Innovation Articles

Dynamical aspects of skew coupling of the logistic family

Osvaldo Osuna
Universidad Michoacana
Cristian Jesús Rojas-Milla
Universidad del Atlántico

Published 2023-12-13

Keywords

  • Logistic map,
  • skew coupling,
  • invariant set

How to Cite

Osuna, O., & Rojas-Milla, C. J. (2023). Dynamical aspects of skew coupling of the logistic family. Revista Integración, Temas De matemáticas, 41(2), 125–146. https://doi.org/10.18273/revint.v41n2-2023004

Abstract

Our main aim is to study some aspects of the asymptotic evolution of the orbits obtained by iterating the endomorphism $$F_{\mu, \epsilon}(x,y)=( f_\mu(x), f_\mu(y)+\epsilon (x-y)),$$ where $\mu >1$ is the parameter of the logistic family: $ f_\mu(x)=\mu x(1-x)$ and $\epsilon\in (0,1),$ is the coupling parameter. This biparametric map is hybrid between two classics in the theory of dynamical systems, the paradigmatic quadratic map and the skew coupling. The main result will be to show in detail the construction of a invariant compact in the parameter space, together with a description of the behavior of the preimages of zones in $ \mathbb R^2$ that play an important role in understanding the dynamics of coupling.

Downloads

Download data is not yet available.

References

  1. L. M. Abramov and V. A. Rohlin, Vestnik Leningrad. Univ. 17(7) (1962), 5–13; English transl., Amer. Math. Soc. Transl. 48(2) (1965), 255–265.
  2. R. L. Adler, A note on the entropy of skew product transformations, Proc. Amer. Math. Soc. 14 (1963), 665–669.
  3. L. Alsedà and M. Misiurewicz. Skew Product Attractors and Concavity. Proc. Amer. Math. Soc. 143 (2015), 703–716.
  4. Hirotada Anzai. Ergodic Skew Product Transformations on the Torus. Osaka Math. J. 3(1), (1951) 83–99.
  5. L. J. Díaz, S. Esteves and J. Rocha. Skew product cycles with rich dynamics: From totally non-hyperbolic dynamics to fully prevalent hyperbolicity. Dyn. Syst. 31(1). (2016) 1–40.
  6. L. J. Díaz, K. Gelfert and M. Rams. Nonhyperbolic step skew-products: Ergodic approximation. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(6). (2017) 1561–1568.
  7. L. S. Efremova. Small C1-smooth perturbations of skew products and the partial integrability property. Appl. Math. Nonlinear Sci. 5(2) (2020) 317–328.
  8. S. Fadaei, G. Keller and F. H. Ghane. Invariant graphs for chaotically driven maps. Nonlinearity. 31. (2018) 5329–5349.
  9. M. Hasler. Synchronization of chaotic systems and transmission of information. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 8(4) (1998) 647–659.
  10. M. Hasler and Y. L. Maistrenko. An introduction to synchronization of chaotic systems: Coupled skew tent maps. IEEE Trans. Circuits Syst. 144 (1997) 856 - 866.
  11. Mattias Jonsson. Dynamics of polynomial skew products on C2. Math. Ann. 314, (1999) 403–447.
  12. Gerhard Keller. Stability index for chaotically driven concave maps. J. London Math. Soc. 89(2), (2014) 603–622
  13. E. Kin. Skew Products of Dynamical Systems. Trans. Amer. Math. Soc. 166, (1972) 27–43.
  14. W. Parry. Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math. 91, (1969) 757–771.
  15. Jana Rodríguez Hertz and Raúl Ures. On the Three-Legged Accesibility Property. New Trends in One-Dimensional Dynamics. María José Pacífico and Pablo Guarino (eds.) Springer Proceedings in Mathematics & Statistics. 285 (2019) 239–248.
  16. N. Romero, A. Rovella and R. Vivas. Invariant Manifolds and Synchronization for Coupled Logistic Mappings. Int. J. Pure Appl. Math. Sci. 4(1) (2007) 39–57.
  17. Stephen Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, (1990).
  18. D. Lind and B. Marcus (1995) An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge.