Revista Integración, temas de matemáticas.
Vol. 25 No. 1 (2007): Revista Integración, temas de matemáticas
Research and Innovation Articles

Significado físico del correlador de n puntos en perturbaciones cosmológicas

Heiner R. Sarmiento Cogollo
Escuela de Física, Universidad Industrial de Santander, Bucaramanga, Colombia
Yeinzon Rodríguez
Centro de Investigaciones, Universidad Antonio Nariño y

Published 2007-04-30

Keywords

  • curvature perturbation,
  • correlator,
  • probability distribution function

How to Cite

Sarmiento Cogollo, H. R., & Rodríguez, Y. (2007). Significado físico del correlador de n puntos en perturbaciones cosmológicas. Revista Integración, Temas De matemáticas, 25(1), 45–50. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/262

Abstract

Progresses made on measuring the temperature in the cosmic microwave background radiation (CMB) promise observational bounds, in particular in the spectrum amplitude Pζ of the primordial curvature perturbation ζ, its associated spectral index nζ , and level of nonaussianity fNL, that would allow us a better discrimination among cosmological inflationary models proposed to explain the origin of the large-scale structure in the Universe. The tool employed to inquire about the statistical properties of the anisotropies in the temperature of the CMB and the theoretical models built to describe such anisotropies, are the n point correlators in cosmological perturbations such as ζ. This work aims to interpret the meaning of the n point correlators in cosmological perturbations, making clear its physical content as a spatial average. As a consequence we obtain an expression for Pζ , and we analyze the implications of such an interpretation in the calculation of fNL.

 

Downloads

Download data is not yet available.

References

[1] R.J. Adler, The Geometry of Random Fields. John Wiley and Sons, 1981.

[2] M. Sasaki, J. Väliviita, D. Wands, “Non-Gaussianity of the Primordial Perturbation in the Curvaton Model”, Physical Review D, 74, 103003 (2006).

[3] S. Dodelson, Modern Cosmology. Academic Press, 2003.

[4] L. Verde, “A Practical Guide to Basic Statistical Techniques for Data Analysis in Cosmology”, arXiv:0712.3028 [astro-ph].

[5] D.H. Lyth, “Large-Scale Energy-Density Perturbations and Inflation”, Physical Review D, 31, 1792-1798, (1985).

[6] D.H. Lyth, D. Seery, “Classicality of the Primordial Perturbations”, arXiv:astroph/0607647.

[7] S. Karlin, H.M. Taylor, A First Course in Stochastic Processes. Academic Press, 1975.

[8] D.N. Spergel et. al., “Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology”, Astrophysical Journal Supplement Series, 170, 377-408, (2007).

[9] F. Gross, Relativistic Quantum Mechanics and Field Theory. Wiley Interscience, 1993.

[10] J. Maldacena, “Non-Gaussian Features of Primordial Fluctuations in Single Field Inflationary Models”, Journal of High Energy Physics, 0305, 013 (2003).

[11] D.H. Lyth, Y. Rodríguez, “Inflationary Prediction for Primordial Non-Gaussianity”, Physical Review Letters, 95, 121302 (2005).

[12] C.T. Byrnes, K. Koyama, M. Sasaki, D. Wands, “Diagrammatic Aproach to NonGaussianity from Inflation”, Journal of Cosmology and Astroparticle Physics, 0711, 027 (2007).

[13] T.S. Bunch, P.C.W. Davies, “Quantum Field Theory in de Sitter Space: Renormalisation by Point Splitting”, Proceedings of the Royal Society of London A, 360, 117-134, (1978).

[14] D. Seery, J.E. Lidsey, “Primordial Non-Gaussianities from Multiple-Field Inflation”,Journal of Cosmology and Astroparticle Physics, 0509, 011 (2005).

[15] D. Seery, J.E. Lidsey, M. Sloth, “The Inflationary Trispectrum”, Journal of Cosmology and Astroparticle Physics, 0701, 027 (2007).