Revista Integración, temas de matemáticas.
Vol. 25 No. 2 (2007): Revista Integración, temas de matemáticas
Research and Innovation Articles

Efecto de la curvatura espacial del universo en el espectro angular de las anisotropías en la temperatura de la radiación cósmica de fondo

Gabriel A. Mariño
Universidad Industrial de Santander
Bio
Yeinzon Rodríguez
Universidad Antonio Nariño
Bio

Published 2007-09-27

Keywords

  • spatial curvature,
  • inflation,
  • angular spectrum,
  • cosmic microwave background radiation

How to Cite

A. Mariño, G., & Rodríguez, Y. (2007). Efecto de la curvatura espacial del universo en el espectro angular de las anisotropías en la temperatura de la radiación cósmica de fondo. Revista Integración, Temas De matemáticas, 25(2), 131–136. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/308

Abstract

The inflationary paradigm solves the three classic problems of the standard cosmology: the flatness problem, the horizon problem, and the unwanted relics problem. In particular the flatness problem is solved by explaining how the relative contribution of the spatial curvature of the Universe to the total energy density decreases exponentially during infla-tion. In addition, the inflationary scenario offers us an efficient mechanism to generate small perturbations in the spatial curvature that would explain the anisotropies in the temperature of the cosmic microwave background radiation (CMB) observed nowadays. The traditional inflationary models that neglect the relative contribution reproduce the recent WMAP observations on the angular spectrum Clof the anisotropies in the tempe­rature of the CMB, but fail in the lowest multipoles where the observations show an unexpected suppression. Such a strange behaviour leads us to pro­pose an analysis of the angular spectrum Cl at large scales (low multipoles) by taking into account the relative contributionand offer a better adjustment to the observed data, revealing in this way the characteristic topology of our observable Universe.

 

Downloads

Download data is not yet available.

References

[1] A.R. Liddle & D.H. Lyth, Cosmological Inflation and Large-Scale Structure. Cambridge University Press (2000).

[2] V.F. Mukhanov, Physical Foundations of Cosmology. Cambridge University Press (2005).

[3] D.N. Spergel et al., “Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology”, Astrophysical Journal Supplement Series, 170 (377-408), 2007.

[4] M. Tegmark et al., “Cosmological Constraints from the SDSS Luminous Red Galaxies”, Physical Review D, 74 (123507), 2006.

[5] G. Efstathiou, “Is the Low CMB Quadrupole a Signature of Spatial Curvature?” Montly Notices of the Royal Astronomical Society, 343 (L95-L98), 2003.

[6] E. Massó, S. Mohanty, A. Nautiyal & G. Zsembinszki, “Imprint of Spatial Curvature on Inflation Power Spectrum”, arXiv:astro-ph/0609349v4.

[7] R.K Sachs & A.M. Wolfe, “Perturbations of a Cosmological Model and Angular Variations of the Microwave Background”, Astrophysical Journal, 147 (73-90), 1967.

[8] V.F. Mukhanov, H.A. Feldman & R.H. Brandenberger, “Theory of Cosmological Perturbations. Part 1. Classical Perturbations. Part 2. Quantum Theory of Perturbations. Part 3. Extensions”, Physics Reports, 215 (203-333), 1992.

[9] J.M. Bardeen, “Gauge Invariant Cosmological Perturbations”, Physical Review D, 22 (1882-1905), 1980.

[10] D.H. Lyth & D. Wands, “Generating the Curvature Perturbation without an Inflaton”, Physics Letters B, 524 (5-14), 2002.

[11] NASA’s WMAP. homepage: http://wmap.gsfc.nasa.gov/