Research and Innovation Articles
Vectores de Killing y cantidades conservadas para espacio-tiempos cuasiesféricos
Published 2007-09-27
Keywords
- General Relativity.
How to Cite
Carot, J., Parra, Y., Núñez, L. A., & Percoco, U. (2007). Vectores de Killing y cantidades conservadas para espacio-tiempos cuasiesféricos. Revista Integración, Temas De matemáticas, 25(2), 151–154. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/315
Abstract
The warped space-time type B with axial symmetry and quasi-spherical is explored. This produces a line element that admits killing vector of the family 1-type proposed by J. Flores et al. [1]. The associated conserved amounts with these vectors are found and therefore a first integral of the geodesic equations which describe fres particle inmerse in such space-time is obtained.
Downloads
Download data is not yet available.
References
[1] J. Flores, Y. Parra & U. Percoco, J. Math. Phys., 45, 3546, 2004.
[2] G.H. Katzin, J. Levine & W.R. Davis, “Curvature Collineations: A Fundamental Symmetry Property of the Space-Times of General Relativity Defined by the Vanishing Lie Derivative of the Riemannian Curvature Tensor”, J. Math. Phys., 10, 617-629, (1969).
[3] G.H. Katzin & J. Levine, J. Math. Phys., 22, 1878, (1981).
[4] S. Hojman, L. Núñez, A. Patiño & H. Rago, J. Math. Phys., 27, 281, (1985).
[5] M. García-Sucre, U. Percoco & L. Núñez, Can. J. Phys. 69, 1217, (1992)
[2] G.H. Katzin, J. Levine & W.R. Davis, “Curvature Collineations: A Fundamental Symmetry Property of the Space-Times of General Relativity Defined by the Vanishing Lie Derivative of the Riemannian Curvature Tensor”, J. Math. Phys., 10, 617-629, (1969).
[3] G.H. Katzin & J. Levine, J. Math. Phys., 22, 1878, (1981).
[4] S. Hojman, L. Núñez, A. Patiño & H. Rago, J. Math. Phys., 27, 281, (1985).
[5] M. García-Sucre, U. Percoco & L. Núñez, Can. J. Phys. 69, 1217, (1992)