Research and Innovation Articles
Published 2014-11-04
Keywords
- Noncommutative rings,
- Jacobson’s radical,
- skew PBW extensions
How to Cite
Reyes, A. (2014). Jacobson’s conjecture and skew PBW extensions. Revista Integración, Temas De matemáticas, 32(2), 139–152. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4389
Abstract
The aim of this paper is to compute the Jacobson’s radical of skew PBW extensions over domains. As a consequence of this result we obtain a direct relation between these extensions and the Jacobson’s conjecture, which implies that skew PBW extensions over domains satisfy this conjecture.
To cite this article: A. Reyes, Jacobson’s conjecture and skew PBW extensions, Rev. Integr. Temas Mat.32 (2014), no. 2, 139-152.
Downloads
Download data is not yet available.
References
- Cauchon G., “Sur l’intersection des puissances du radical d’un T -anneau noethérien”, C. R. Acad. Sci. Paris Sér. A 279 (1974), 91-93.
- Cauchon G., “Les T-anneaux, la condition (H) de Gabriel et ses consequences”, Comm. Algebra 4 (1976), no. 1, 11-50.
- Gallego C. and Lezama O., “Gröbner bases for ideals of σ − PBW extensions”, Comm.Algebra 39 (2011), no. 1, 50-75.
- Goodearl K.R. and Warfield R.B. Jr., An introduction to noncommutative Noetherian rings, Second edition. London Mathematical Society Student Texts, 61, Cambridge University
- Press, Cambridge, 2004.
- Herstein I.N., “A counterexample in Noetherian rings”, Proc. Nat. Acad. Sci. 54 (1965), 1036-1037.
- Hinchclife O.G., Diffusion Algebras, Thesis (PhD), University of Sheffield, Sheffield, 2005,119 p.
- Jacobson N., “The radical and semi-simplicity for arbitrary rings”, Amer. J. Math. 67 (1945), 300-320.
- Jacobson N., “Structure of rings”, in American Mathematical Society, Colloquium Publications, vol. 37, AMS 190, Hope Street, Prov., R.I., 1956, 263 p.
- Jategaonkar A.V., “Left principal ideal domains”, J. Algebra 8 (1968), 148-155.
- Jategaonkar A.V., “A counter-example in ring theory and homological algebra”, J. Algebra 12 (1969), 418-440.
- Jategaonkar A.V., “Jacobson’s conjecture and modules over fully bounded Noetherian rings”, J. Algebra 30 (1974), 103-121.
- Jategaonkar A.V., “Noetherian bimodules”, in Proceedings of the Conference on Noetherian Rings and Rings with Polynomial Identities, University of Leeds (1979), 158-169.
- Jategaonkar A.V., “Solvable Lie algebras, polycyclic-by-finite groups and bimodule Krull dimension”, Comm. Algebra 10 (1982), no. 1, 19-69.
- Kaplansky I., Commutative rings, Allyn and Bacon, Boston, 1970.
- Lam, T.Y., A First Course in Noncommutative Rings, Second edition, Grad. Texts in Math. 131, Springer-Verlag, New York, 2001.
- Lenagan T.H., “Noetherian rings with Krull dimension one”, J. Lond. Math. Soc. (2) 15 (1977), no. 1, 41-47.
- Lezama O. and Reyes A., “Some homological properties of skew PBW extensions”, Comm. Algebra 42 (2014), no. 3, 1200-1230.
- McConnell J.C. and Robson J.C., Noncommutative Noetherian Rings, Grad. Studies in Math. 30, AMS, 2001.
- Reyes A., “Ring and module theoretic properties of skew PBW extensions”, Thesis (Ph.D.), Universidad Nacional de Colombia, Bogotá, 2013, 142 p.
- Rosenberg A.L., “Noncommutative algebraic geometry and representations of quantized algebras”, in Mathematics and its Applications 330, Kluwer Academic Publishers Group,
- Dordrecht, 1995.
- Schelter W., “Essential extensions and intersection theorems”, Proc. Amer. Math. Soc. 53
- (1975), no. 2, 328-330.