Published 2015-05-21
Keywords
- Continuous decomposition,
- continuously irreducible continuum,
- hyperspace,
- idempotency,
- Jones’ set function T
- irreducible continuum,
- symmetric products,
- type θ continuum,
- type θn continuum,
- type A′ θ-continuum,
- weakly irreducible continuum,
- Z-set ...More
How to Cite
Abstract
In 1974 Professor R. W. FitzGerald defined type θ and θn continua. (A continuum X is of type θ (type θn, for some positive integer n) if for each subcontinuum K of X, we have that X \ K has only a finite number of components (X \ K has at most n components).) Professors E. E. Grace and E. J. Vought continued the study of these clases of continua, when such continua admit an upper semicontinuous monotone decomposition whose quotient space is a graph. The purpose of this work is to present some of the properties of type θ and θn continua, mainly when the decomposition is continuous [14].
To cite this article: S. Macías, Sobre los continuos tipo θ y θn, Rev. Integr. Temas Mat. 33 (2015), no. 1, 27-39.Downloads
References
- Davis H.S. “A note on connectedness im kleinen”, Proc. Amer. Math. Soc. 19 (1968), 1237-1241.
- Eberhart C. and Nadler S.B. Jr., “Irreducible Whitney levels”, Houston J. Math. 6 (1980), no. 3, 355-363.
- Fernández L. and Macías S., “The set functions T and K and irreducible continua”, Colloq. Math. 121 (2010), no. 1, 79-91.
- Fitzgerald R.W., “Connected sets with a finite disconnection property”, in Studies in Topology. Academic Press, (1975), 139-173.
- Grace E.E., “Monotone decompositions of θ-continua”, Trans. Amer. Math. Soc. 275 (1983), no. 1, 287-295.
- Grace E.E. and Vought E.J., “Monotone decompositions of θn-continua”, Trans. Amer. Math. Soc. 263 (1981), no. 1, 261-270.
- Grace E.E. and Vought E.J., “Quasimonotone mappings on θn-continua”, Topology Appl. 17 (1984), no. 1, 55-62.
- Grace E.E. and Vought E.J., “Refinable maps and θn-continua”, Proc. Amer. Math. Soc. 106 (1989), no. 1, 231-239.
- Heath J., “On n-ods”, Houston J. Math. 9 (1983), no. 4, 477-487.
- Macías S., Topics on continua, Pure and Applied Mathematics Series, Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton, London, New York, Singapore, 275
- (2005).
- Macías S., “Un Breve Panorama de los Hiperespacios de Continuos”, Rev. Integr. Temas Mat. 23 (2005), no. 2, 1-13.
- Macías S., “A decomposition theorem for a class of continua for which the set function T is continuous”, Colloq. Math. 109 (2007), no. 1, 163-170.
- Macías S., “On continuously irreducible continua”, Topology Appl. 156 (2009), no. 14, 2357-2363.
- Macías S., “On continuously type A′ θ-continua”, manuscrito.
- Macías S. and Nadler S.B. Jr., “Z-sets in hyperspaces”, Questions Answers Gen. Topology. 19 (2001), no. 2, 227-241.
- Maćkowiak T., “Continuous mappings on continua”, Dissertationes Math. (Rozprawy Mat.) 158 (1979), 1-95.
- Maćkowiak T., “Singular arc-like continua”, Dissertationes Math. (Rozprawy Mat.) 257 (1986), 1-35.
- Mohler L. and Oversteegen L.G., “On the structure of tranches in continuously irreducible continua”, Colloq. Math. 54 (1987), no. 1, 23-28.
- Nadler S.B. Jr., Hyperspaces of sets: A text with research questions, Monographs and Textbooks in Pure and Applied Math., Vol. 49, Marcel Dekker, New York, Basel, 1978.
- Reprinted in: Aportaciones Matemáticas de la Sociedad Matemática Mexicana, Serie Textos # 33, 2006.
- Thomas E.S. Jr., “Monotone decompositons of irreducible continua”, Rozprawy Mat. 50 (1966), 1-74.
- Vought E.J., “Monotone decompositions of continua not separated by any subcontinua”, Trans. Amer. Math. Soc. 192 (1974), 67-78.
- Vought E.J., “Monotone decompositions of continua”, in General Topology and Modern Analysis (ed. L. F. McAuley y M. M. Rao), Academic Press (1981), 105-113.
- Ward L.E., “Extending Whitney maps”, Pacific J. Math. 93 (1981), no. 2, 465-469.