Revista Integración, temas de matemáticas.
Vol. 20 No. 1 y 2 (2002): Revista Integración, temas de matemáticas
Research and Innovation Articles

Rotating Relativistic Thin Disks as Sources of the Taub-NUT Solution

Guillermo A. González
Bio

Published 2002-06-06

Keywords

  • Taub-NUT metric,
  • Newotnian density,
  • general relativity

How to Cite

González, G. A. (2002). Rotating Relativistic Thin Disks as Sources of the Taub-NUT Solution. Revista Integración, Temas De matemáticas, 20(1 y 2), 13–17. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/732

Abstract

Rotating disks with nonzero radial pressure and finite radius are studied. The models are based in the Taub-NUT metric and cons-tructed using the well-known "displace, cut and reflect" method. We find that the disks are made of perfect fluids with constant energy density and pressure. The energy density is negative, but the effective Newto-nian density is possitive as the strong energy condition requires. We also find that the disks are not stable under radial perturbations and that there are regions of the disks where the particles move with superluminal velocities. 

 

Downloads

Download data is not yet available.

References

[1] KRAMER D., STEPHANI H., HERLT E. and McCALLUM M.Exact So-lutions of Einstein’s Field Equations, Cambridge University Press, 1980.

[2] BI ̆CÁK J., LYNDEN-BELL D. and KATZ J.Phys. Rev.D 47, 4334(1993).

[3] BI ̆CÁK J., LYNDEN-BELL D. and PICHON C.Mont. Not. R. Astron.Soc.265, 126 (1993).

[4] GONZÁLEZ G. A. and LETELIER P. S.Class. Quantum. Grav.16, 479(1999).

[5] LEDVINKA T., ZOFKA M. and BI ̆CÁK J. InProceedings of the 8th Mar-cel Grossman Meeting in General Relativity, edited by T. Piran (WorldScientific, Singapore, 1999), pp. 339-341.

[6] LETELIER P. S.Phys. Rev.D 60, 104042 (1999).[7] KATZ J., BI ̆CÁK J. and LYNDEN-BELL D.Class. Quantum Grav.16,4023 (1999).

[8] BI ̆CÁK J. and LEDVINKA T.Phys. Rev. Lett.71, 1669 (1993).

[9] PICHON C. and LYNDEN-BELL D.Mont. Not. R. Astron. Soc.280,1007 (1996).

[10] GONZÁLEZ G. A. and LETELIER P. S.Phys. Rev.D 62, 064025 (2000).

[11] REINA C. and TREVES A.Gen. Rel. Grav.7, 817 (1976).[12] HAWKING S. W. and ELLIS G. F. R.The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, 1973.

[13] BARDEEN J.Ap. J.162, 71 (1970).[14] BARDEEN J., PRESS W. H. and TEUKOLSKY S. A.Ap. J.178, 347(1972).

[15] LANDAU L. D. and LIFSHITZ E. M.Fluid Mechanics, Addisson-Wesley,Reading, MA, 1989