Desbalances genómicos del locus 9p24.1 en pacientes argentinos con linfoma de Hodgkin clásico

  • Mauro García-Montenegro Academia Nacional de Medicina
  • Marina Narbaitz Academia Nacional de Medicina
  • María Fernanda Metrebian Academia Nacional de Medicina.
  • Astrid Pavlovsky Academia Nacional de Medicina
  • Irma Slavutsky Academia Nacional de Medicina

Resumen

Introducción: El linfoma de Hodgkin clásico presenta escasas células de Reed Sternberg/Hodgkin inmersas en un abundante microambiente tumoral. Los desbalances genómicos del locus 9p24.1 han sido asociados con alteraciones en la expresión de los genes del ligando de muerte celular 1 y 2, ambos reguladores de la respuesta inmune. Objetivo: Evaluar desbalances genómicos del locus 9p24.1 en células de Reed Sternberg/Hodgkin y del microambiente tumoral en biopsias de pacientes con linfoma d Hodgkin clásico y correlacionarlo con la expresión del ligando de muerte celular 1 y la presentación de la enfermedad. Materiales y Métodos: Se efectuó hibridación in situ en biopsias de 22 pacientes con linfoma de Hodgkin clásico dirigida a los genes del ligando de muerte celular 1 y 2. Las alteraciones se clasificaron en: amplificación, ganancia y polisomía. La expresión se evaluó mediante inmunohistoquímica. Resultados: Todos los pacientes mostraron alteraciones del número de copias. Se diferenciaron dos grupos: con amplificación (32%) y sin amplificación (68%); este último subdividido en: rico en ganancia (53%) y rico en polisomías (47%). El grupo rico en polisomías mostró mayor edad (p=0,027). El 40% de los pacientes con amplificación y rico en ganancias no presentó masa bulky. La expresión proteica mostró score +3 sólo en estos últimos. El 100% de los casos ricos en polisomías presentaron monosomía del cromosoma 9 en los linfocitos circundantes respecto al 36,4% de los otros dos grupos. Conclusiones: Nuestros datos constituyen un aporte a la caracterización biológica del LHC, de interés en el marco de las nuevas modalidades terapéuticas. 

Palabras clave: Linfoma de Hodgkin, FISH, PD-L1/PD-L2, Expresión génica

Descargas

La descarga de datos todavía no está disponible.

Referencias

1. Shanbhag S, Ambinder RF. Hodgkin Lymphoma: A review and
update on recent progress. CA Cancer J Clin. 2018;68(2):116-
32. PubMed PMID: 29194581; PubMed Central PMCID:
PMC5842098.
2. Pavlovsky A, Fernandez I, Kurgansky N, Prates V, Zoppegno L,
Negri P, et al. PET-adapted therapy after three cycles of ABVD
for all stages of Hodgkin lymphoma: results of the GATLA LH-
05 trial. Br J Haematol. 2019;185(5):865-73. PubMed PMID:
30864146.
3. Ferlay J, Soerjomataram I, Ervik M, et al. Cancer incidence and
mortality worldwide: sources, methods and major patterns in
GLOBOCAN 2012. Int J Cancer. 2015;136(5): E359-86. PubMed
PMID: 25220842.
4. Kusminsky G, Abriata G, Forman D, et al. Hodgkin lymphoma
burden in Central and South America. Cancer Epidemiol.
2016;44 Suppl 1:S158-67. PubMed PMID: 27678318.
5. Siegel RL Miller KD, Jemal A. Cancer Statistics, 2019. CA Cancer
J Clin. 2019;69(1):7-34. PubMed PMID: 30620402.
6. Jaffe ES, Stein H, Swerdlow SH. Classic Hodgkin lymphoma. In:
Swerdlow SH, Campo E, Harris NL, editors. WHO Classification
of Tumors of Hematopoietic and Lymphoid Tissues. Revised 4th
ed. Lyon: IARC Press; 2017. p. 435-42.
7. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert
R, et al. The 2016 revision of the World Health Organization
classification of lymphoid neoplasms. Blood. 2016;
127(20):2375-90.
8. Hodgkin T. On some morbid appearances of the absorbent glands
and spleen. Med. Chir. Trans. 1832;17:68-114
9. Mani H, Jaffe ES. Hodgkin lymphoma: an update on its
biology with new insights into classification. Clin Lymph Res.
2009;9(3):206-16.
10. Küppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer.
2009;9(1):15-27.
11. Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM,
Ansell S, et al. Nivolumab for classical Hodgkin’s lymphoma
after failure of both autologous stem-cell transplantation and
brentuximab vedotin: a multicentre, multicohort, single-arm
phase 2 trial. The Lancet Oncol. 2016;17(9):1283-94.
12. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC,
Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or
refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311-9.
13. Liu Y, Sattarzadeh A, Diepstra A, Visser L, van den Berg A. The
microenvironment in classical Hodgkin lymphoma: an actively
shaped and essential tumor component. Semin Cancer Biol.
2014;24:15-22.
14. Aldinucci D, Celegato M, Casagrande N. Microenvironmental
interactions in classical Hodgkin lymphoma and their role in
promoting tumor growth, immune escape and drug resistance.
Cancer Lett. 2016;380(1):243-52.
15. Calabretta E, d’Amore F, Carlo-Stella C. Immune and
inflammatory cells of the tumor microenvironment represent
novel therapeutic targets in classical Hodgkin lymphoma. Int J
Mol Sci. 2019;20(21):5503.
16. Hartmann S, Martin-Subero JI, Gesk S, Husken J, Giefing M,
Nagel I, et al. Detection of genomic imbalances in microdissected
Hodgkin and Reed-Sternberg cells of classical Hodgkin’s
lymphoma by array-based comparative genomic hybridization.
Haematologica. 2008;93(9):1318-26.
17. Steidl C, Telenius A, Shah SP, Farinha P, Barclay L, Boyle M,
et al. Genome-wide copy number analysis of Hodgkin Reed-
Sternberg cells identifies recurrent imbalances with correlations
to treatment outcome. Blood. 2010;116(3):418-27.
18. Cuceu C, Hempel WM, Sabatier L, Bosq J, Carde P, M’Kacher R.
Chromosomal instability in Hodgkin lymphoma: An in-depth
review and perspectives. Cancers. 2018;10(4):91.
19. Erdkamp FL, Schouten HC, Breed WP, Janssen WC, Hoffmann
JJ, Schutte B, et al. DNA aneuploidy in Hodgkin’s disease: a
multiparameter flow cytometric analysis. Leuk Lymphoma.
1994;12 (3-4):297-306
20. Jansen MP, Hopman AH, Haesevoets AM, Gennotte IA, Bot FJ,
Arends JW, et al. Chromosomal abnormalities in Hodgkin’s
disease are not restricted to Hodgkin/Reed-Sternberg cells. J
Pathol. 1998;185(2):145-52.
21. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E,
et al. Integrative analysis reveals selective 9p24.1 amplification,
increased PD-1 ligand expression, and further induction via
JAK2 in nodular sclerosing Hodgkin lymphoma and primary
mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268-
77.
22. Roemer MG, Advani RH, Ligon AH, Natkunam Y, Redd RA,
Homer H, et al. PD-L1 and PD-L2 Genetic Alterations Define
Classical Hodgkin Lymphoma and Predict Outcome. J Clin
Oncol. 2016;34(23):2690-7.
23. Joos S, Kupper M, Ohl S, von Bonin F, Mechtersheimer G, Bentz
M, et al. Genomic imbalances including amplification of the
tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res.
2000;60(3):549-52.
24. Rui L, Emre NC, Kruhlak MJ, Chung HJ, Steidl C, Slack G, et al.
Cooperative epigenetic modulation by cancer amplicon genes.
Cancer Cell. 2010;18(6):590-605.
25. Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann
S, Mechtersheimer G, et al. TNFAIP3 (A20) is a tumor suppressor
gene in Hodgkin lymphoma and primary mediastinal B cell
lymphoma. J Exp Med. 2009;206(5):981-9.
26. Lake A, Shield LA, Cordano P, Chui DTY, Osborne J, Crae S, et
al. Mutations of NFKBIA, encoding IkBa, are a recurrent finding
in classical Hodgkin lymphoma but are not a unifying feature
of non-EBV-associated cases. Int J Cancer. 2009;125(6):1334-42.
27. Emmerich F, Theurich S, Hummel M, Haeffker A, Vry MS,
Döhner K, et al. Inactivating I kappa B epsilon mutations in
Hodgkin/Reed-Sternberg cells. J Pathol. 2003;201(3):413-20.
28. Tiacci E, Penson A, Schiavoni G, Ladewig E, Fortini E,
Wang Y, et al. New Recurrently Mutated Genes in Classical
Hodgkin Lymphoma Revealed by Whole-Exome Sequencing of
Microdissected Tumor Cells. Blood. 2016;128(22):1088.
29. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and Its Ligand
in Tolerance and Immunity. Annu Rev Immunol. 2008;26(1):677-
704.
30. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura
H, et al. Engagement of the PD 1 Immunoinhibitory Receptor
by a Novel B7 Family Member Leads to Negative Regulation of
Lymphocyte Activation. J Exp Med. 2000;192(7):1027-34.
31. Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H,
Nishimura M. B7-H1 Expression on Non-Small Cell Lung Cancer
Cells and Its Relationship with Tumor-Infiltrating Lymphocytes
and Their PD-1 Expression. Clin Cancer Res. 2004;10(15):5094-
100.
32. Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Scott
Webster W, et al. Costimulatory B7-H1 in renal cell carcinoma
subjects: Indicator of tumor aggressiveness and potential
therapeutic target. Proc Natl Acad Sci USA. 2004;101(49):17174-9.
33. Ohigashi Y, Sho M, Yamada Y, Tsurui Y, Hamada K, Ikeda N, et
al. Clinical Significance of Programmed Death-1 Ligand-1 and
Programmed Death-1 Ligand-2 Expression in Human Esophageal
Cancer. Clin. Cancer Res. 2005;11(8):2947-53.
34. Hino R, Kabashima K, Kato Y, Yagi H, Nakamura M, Honjo T,
et al. Tumor Cell Expression of Programmed Cell Death-1
ligand 1 Is a Prognostic Factor for Malignant Melanoma. Cancer.
2010;116(7):1757-66.
35. Roosbroeck KV, Ferreiro JF, Tousseyn T, van der Krogt J-A,
Michaux L, Pienkowska-Grela B, et al. Genomic Alterations of
the JAK2 and PDL Loci Occur in a Broad Spectrum of Lymphoid
Malignancies. Genes Chromosom Cancer. 2016;55(5):428-41.
36. Chapuy B, Roemer MGM, Stewart C, Tan Y, Abo RP, Zhang L, et
al. Targetable genetic features of primary testicular and primary
central nervous system lymphomas. Blood. 2016;127(7):869-81.
37. Cheng Z, Dai Y, Wang J, Shi J, Ke X, Fu L. High PD-L1 expression
predicts poor prognosis in diffuse large B-cell lymphoma. Ann
Hematol. 2018;97(6):1085-8.
38. Garaicoa FH, Roisman A, Arias M, Trila C, Fridmanis M, Abeldaño
A, et al. Genomic imbalances and microRNA transcriptional
profiles in patients with mycosis fungoides. Tumor Biol.
2016;37(10):13637-47.
39. Kinch A, Sundström C, Baecklund E, Backlin C, Daniel M, Enblad
G. Expression of PD-1, PD-L1, and PD-L2 in posttransplant
lymphoproliferative disorder after solid organ transplantation.
Leuk Lymphoma. 2019;60(2):376-84.
40. Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MGM, Xu ML,
et al. PD-L1 Expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin
Cancer Res. 2013;19(13):3462-73
41. Paydas S, Bağır E, Seydaoglu G, Ercolak V, Ergin M. Programmed
death-1 (PD-1), programmed death-ligand 1 (PD-L1), and EBVencoded
RNA (EBER) expression in Hodgkin lymphoma. Ann
Hematol 2015;94(9):1545-52.
42. Meignan M, Gallamini A, Haioun C. Report on the First
International Workshop on interim-PET-scan in lymphoma. Leuk
Lymphoma. 2009;50(8):1257-60.
43. Menter T, Bodmer-Haecki A, Dirnhofer S, Tzankov A. Evaluation
of the diagnostic and prognostic value of PDL1 expression in
Hodgkin and B-cell lymphomas. Hum Pathol. 2016;54:17-24.
44. Koh YW, Jeon YK, Yoon DH, Suh C, Huh J. Programmed death
1 expression in the peritumoral microenvironment is associated
with a poorer prognosis in classical Hodgkin lymphoma. Tumor
Biol. 2016;37(6):7507-14.
45. Hollander P, Kamper P, Ekstrom Smedby K, Enblad G,
Ludvigsen M, Mortensen J, et al. High proportions of PD-1
+ and PD-L1 + leukocytes in classical Hodgkin lymphoma
microenvironment are associated with inferior outcome. Blood
Adv. 2017;1(18):1427-39.
46. Carey CD, Gusenleitner D, Lipschitz M, Roemer MGM, Stack EC,
Gjini E, et al. Topological analysis reveals a PD-L1-associated
microenvironmental niche for Reed-Sternberg cells in Hodgkin
lymphoma. Blood. 2017;130(22):2420-30.
47. Falzetti D, Crescenzi B, Matteuci C, Falini B, Martelli MF, Van Den
Berghe H, et al. Genomic instability and recurrent breakpoints are
main cytogenetic findings in Hodgkin’s disease. Haematologica.
1999;84(4):298-305.
48. M’Kacher R, Girinsky T, Koscielny S, Dossou J, Violot D,
Beron-Gaillard N, et al. Baseline and treatment-induced
chromosomal abnormalities in peripheral blood lymphocytes
of Hodgkin’s lymphoma patients. Int J Radiat. Oncol Biol Phys.
2003;57(2):321-6.
49. Barrios L, Caballin MR, Miro R, Fuster C, Berrozpe G, Subias A, et
al. Chromosome abnormalities in peripheral blood lymphocytes
from untreated Hodgkin’s patients. A possible evidence for
chromosome instability. Hum Genet. 1988;78(4):320-4.
50. Salas C, Niembro A, Lozano V, Gallardo E, Molina B, Sanchez
S, et al. Persistent genomic instability in peripheral blood
lymphocytes from Hodgkin lymphoma survivors. Environ. Mol.
Mutagen. 2012;53(4):271-80.
51. Mata E, Díaz-López A, Martín-Moreno AM, Sánchez-Beato M,
Varela I, Mestre MJ, et al. Analysis of the mutational landscape of
classic Hodgkin lymphoma identifies disease heterogeneity and
potential therapeutic targets. Oncotarget. 2017;8(67):111386-95.
Publicado
2021-05-31
Sección
Artículo original