Resumen
La metformina es una biguanida que disminuye gluconeogénesis e incrementa la recaptación de glucosa en los músculos, sin embargo, más allá del glucémico se han documentado beneficios adicionales como la disminución de complicaciones crónicas derivadas de la hiperglucemia, entre ellas las cardiovasculares y del síndrome metabólico per se. Objetivo: identificar los efectos de la metformina diferentes al control control glucémico en población con diabetes mellitus, con el fin de contribuir a difundir el conocimiento. Materialesy método: tres revisores independientes realizaron la búsqueda en distintas bases de datos entre ellas Pubmed y ScienceDirect, utilizando los términos Metfomin AND Cardiovascular disease AND inflamatory response AND Hyperlipidemia, Biguanides, Diabetes Mellitus, Diabetes complications, Obesity, Vascular diseases AND Cancer; y Metfomina y enfermedad cardiovascular, metformina y cáncer se seleccionaron los artículos desde el año 2010, encontrando 13 828 artículos, de los cuales se incluyeron 144. Conclusión: más allá del control glucémico, la metformina, modifica la “memoria metabólica”, reduce mediadores inflamatorios y el grosor de pared arterial, disminuye factores
trombóticos y reduce la prevalencia de falla cardiaca logrando impactar la morbimortalidad y mediante cambios moleculares o genéticos, tiene potencial uso como anticancerígeno. El clínico debe conocer estos efectos para favorecer su pronto inicio en los casos indicados. MÉD.UIS. 2017;30(1):57-71.
Palabras clave: Metformina. Diabetes Mellitus. Proteínas Quinasas Activada por AMP. Obesidad. Enfermedades Vasculares. Neoplasias.
Referencias
Centers for Disease Control and Prevention. National Diabetes
Statistics Report: Estimates of Diabetes and Its Burden in the
United States, 2014. Atlanta, GA: US Department of Health and
Human Services; 2014.
Zhu M, Li J, Li Z, Luo W, Dai D, Weaver SR, et al. Mortality rates
and the causes of death related to diabetes mellitus in Shanghai
Songjiang District: an 11-year retrospective analysis of death
certificates. BMC Endocr Disord. 2015;15:45.
Action to Control Cardiovascular Risk in Diabetes Study G,
Gerstein HC, Miller ME, Byington RP, Goff DC, Jr., Bigger JT, et al.
Effects of intensive glucose lowering in type 2 diabetes. N Engl J
Med. 2008;358(24):2545-59.
Nandy M, Mandal A, Banerjee S, Ray K. A prescription survey
in diabetes assessing metformin use in a tertiary care hospital in
Eastern India. J Pharmacol Pharmacother. 2012;3(3):273-5.
American Diabetes Association. Approaches to Glycemic
Treatment. Diabetes Care. 2016;39:S52-9.
Triggle CR, Ding H. Cardiovascular impact of drugs used in the
treatment of diabetes. Ther Adv Chronic Dis. 2014;5(6):245-68.
American Diabetes Association. Standards of medical care in
diabetes. Diabetes Care. 2014;37:S14-S80.
Konrad K, Datz N, Engelsberger I, Grulich-Henn J, Hoertenhuber
T, Knauth B, et al. Current use of metformin in addition to insulin
in pediatric patients with type 1 diabetes mellitus: an analysis
based on a large diabetes registry in Germany and Austria.
Pediatr Diabetes. 2014: 16(7):529-37
Glueck CJ, Fontaine RN, Wang P, Subbiah MT, Weber K, Illig E,
et al. Metformin reduces weight, centripetal obesity, insulin,
leptin, and low-density lipoprotein cholesterol in nondiabetic,
morbidly obese subjects with body mass index greater than 30.
Metabolism. 2001;50:856-61.
Pratley RE. The early treatment of type 2 diabetes. Am J Med.
;126:S2-9.
Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE.
Metabolic effects of metformin in non-insulin-dependent
diabetes mellitus. N Engl J Med. 1995;333:550-4.
Pernicova I, Korbonits M. Metformin--mode of action and clinical
implications for diabetes and cancer. Nat Rev Endocrinol.
;10(3):143-56.
Ferrannini E. The Target of Metformin in Type 2 Diabetes. N Engl
J Med. 2014;371:1547-8.
Baur JA, Birnbaum MJ. Control of gluconeogenesis by metformin:
does redox trump energy charge? Cell Metab. 2014;20(2):197-9.
Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V,
Chandramouli V, et al. Mechanism by which metformin
reduces glucose production in type 2 diabetes. Diabetes.
;49(12):2063-9.
Rena G, Pearson ER, Sakamoto K. Molecular mechanism of
action of metformin: Old or new insights? Diabetologia.
;56(9):1898-906.
Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli
F. Cellular and molecular mechanisms of metformin: an overview.
Clin Sci. 2011;122(6):253-70.
Wu T, Thazhath SS, Bound MJ, Jones KL, Horowitz M, Rayner
CK. Mechanism of increase in plasma intact GLP-1 by metformin
in type 2 diabetes: Stimulation of GLP-1 secretion or reduction in
plasma DPP-4 activity? Diabetes Res Clin Pract. 2014;106(1):e3-6.
Farilla L, Hui H, Bertolotto C, Kang E, Bulotta A, Di Mario U,
et al. Glucagon-like peptide-1 promotes islet cell growth and
inhibits apoptosis in Zucker diabetic rats. Endocrinology.
;143(11):4397-408.
Lima MM, Balladares N, Torres C, Vera L, Bognanno F, Marin M,
et al. Physiological role of incretins and its importance in type
diabetes mellitus. Infor Med. 2009;11(1):437-43.
Qaseem A, Humphrey LL, Sweet DE, Starkey M, Shekelle P.
Oral pharmacologic treatment of type 2 diabetes mellitus:
A clinical practice guideline from the american college of
physicians. Ann Intern Med. 2012;156(3):218-31.
Bennett WL, Maruthur NM, Singh S, Segal JB, Wilson LM,
Chatterjee R, et al. Comparative effectiveness and safety of
medications for type 2 diabetes: An update including new drugs
and 2-drug combinations. Ann Intern Med. 2011;154(9):602-18.
Ryan DH, Espeland MA, Foster GD, Haffner SM, Hubbard VS,
Johnson KC, et al. Look AHEAD (Action for Health in Diabetes):
design and methods for a clinical trial of weight loss for the
prevention of cardiovascular disease in type 2 diabetes. Control
Clin Trials; 2003;24(5):610-28.
Romanelli RJ, Chung S, Pu J, Nimbal V, Zhao B, Palaniappan L.
Comparative effectiveness of early versus delayed metformin
in the treatment of type 2 diabetes. Diabetes Res Clin Pract.
;108(1):1-9.
Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones
NP, et al. Glycemic durability of rosiglitazone, metformin, or
glyburide monotherapy. N Engl J Med. 2006;355:2427-43.
No authors. Intensive blood-glucose control with sulphonylureas
or insulin compared with conventional treatment and risk
of complications in patients with type 2 diabetes (UKPDS
. UK Prospective Diabetes Study (UKPDS) Group. Lancet.
;352(9131):837-53.
Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S,
et al. Intensive insulin therapy prevents the progression of diabetic
microvascular complications in Japanese patients with noninsulin-
dependent diabetes mellitus: a randomized prospective
-year study. Diabetes Res Clin Pract; 1995;28:103-17.
Scarpello JHB. Improving survival with metformin: the
evidence base today. Diabetes Metab. 2003;29(4):6S36-43.
Held C, Hjemdahl P, Eriksson SV, Bjorkander I, Forslund L,
Rehnqvist N. Prognostic implications of intima-media thickness
and plaques in the carotid and femoral arteries in patients with
stable angina pectoris. Eur Heart J. 2001;22(1):62-72.
Tapp RJ, Shaw JE, Zimmet PZ, Balkau B, Chadban SJ, Tonkin AM,
et al. Albuminuria is evident in the early stages of diabetes onset:
Results from the Australian Diabetes, Obesity, and Lifestyle
Study (AusDiab). Am J Kidney Dis. 2004;44(5):792-8.
Smith AG, Singleton JR. The diagnostic yield of a standardized
approach to idiopathic sensory-predominant neuropathy. Arch
Intern Med. 2004;164(9):1021-5.
Franciosi M, Pellegrini F, Sacco M, De Berardis G, Rossi
MCE, Strippoli GFM, et al. Identifying patients at risk for
microalbuminuria via interaction of the components of the
metabolic syndrome: A cross-sectional analytic study. Clin J Am
Soc Nephrol. 2007;2(5):984-91.
Kim YI, Kim CH, Choi CS, Chung YE, Lee MS, Lee SI, et al.
Microalbuminuria is associated with the insulin resistance
syndrome independent of hypertension and type 2 diabetes in
the Korean population. Diabetes Res Clin Pract. 2001;52(2):145-
Group DPPR. The prevalence of retinopathy in impaired glucose
tolerance and recent-onset diabetes in the Diabetes Prevention
Program. Diabet Med. 2007;24(2):137-44.
Wong TY, Liew G, Tapp RJ, Schmidt MI, Wang JJ, Mitchell P, et al. Relation between fasting glucose and retinopathy for diagnosis of
diabetes: three population-based cross-sectional studies. Lancet.
;371(9614):736-43.
Hu FB, Stampfer MJ, Haffner SM, Solomon CG, Willett WC,
Manson JE. Elevated risk of cardiovascular disease prior to clinical
diagnosis of type 2 diabetes. Diabetes Care. 2002;25(7):1129-34.
Levitzky YS, Pencina MJ, D’Agostino RB, Meigs JB, Murabito
JM, Vasan RS, et al. Impact of Impaired Fasting Glucose on
Cardiovascular Disease. The Framingham Heart Study. J Am Coll
Cardiol. 2008;51(3):264-70.
Barr ELM, Zimmet PZ, Welborn TA, Jolley D, Magliano DJ,
Dunstan DW, et al. Risk of Cardiovascular and All-Cause Mortality
in Individuals With Diabetes Mellitus, Impaired Fasting Glucose,
and Impaired Glucose Tolerance. Circulation. 2007;116(2):151-7.
Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin
JM, Walker EA, et al. Reduction in the incidence of type 2
diabetes with lifestyle intervention or metformin. N Engl J Med;
;346(6):393-403
Copeland KC, Silverstein J, Moore KR, Prazar GE, Raymer T,
Shiffman RN, et al. Management of newly diagnosed type 2
Diabetes Mellitus (T2DM) in children and adolescents. Pediatrics.
;131(2):364-82.
Chang RJ, Nakamura RM, Judd HL, Kaplan SA. Insulin resistance
in nonobese patients with polycystic ovarian disease. J Clin
Endocrinol Metab. 1983;57(2):356-9.
Nestler JE. Metformin for the treatment of the polycystic ovary
syndrome. N Engl J Med. 2008;358(1):47-54.
Ehrmann DA, Barnes RB, Rosenfield RL, Cavaghan MK, Imperial
J. Prevalence of impaired glucose tolerance and diabetes
in women with polycystic ovary syndrome. Diabetes Care.
;22(1):141-6.
Sharma ST, Wickham III EP, Nestler JE. Changes in glucose
tolerance with metformin treatment in polycystic ovary syndrome:
a retrospective analysis. Endocr Pract. 2007;13(4):373-9.
Diabetes Prevention Program Research G. Long-term safety,
tolerability, and weight loss associated with metformin in the
Diabetes Prevention Program Outcomes Study. Diabetes Care.
;35(4):731-7.
Becker S, Dossus L, Kaaks R. Obesity related hyperinsulinaemia
and hyperglycaemia and cancer development. Arch Physiol
Biochem. 2009;115(2):86-96.
Rizvi AA, Nikolic D, Sallam HS, Montalto G, Rizzo M, Abate N.
Adipokines and lipoproteins: modulation by antihyperglycemic
and hypolipidemic agents. Metab Syndr Relat Disord.
;12(1):1-10.
Leblanc ES, O’Connor E, Whitlock EP, Patnode CD, Kapka T.
Effectiveness of primary care-relevant treatments for obesity
in adults: a systematic evidence review for the U.S. Preventive
Services Task Force. Ann Intern Med. 2011;155(7):434-47.
49.Levri KM, Slaymaker E, Last A, Yeh J, Ference J, D’Amico F, et al. Metformin as treatment for overweight and obese adults: a
systematic review. Ann Fam Med. 2005;3(5):457-61.
Nieuwenhuis-Ruifrok AE, Kuchenbecker WK, Hoek A, Middleton
P, Norman RJ. Insulin sensitizing drugs for weight loss in women
of reproductive age who are overweight or obese: systematic
review and meta-analysis. Hum Reprod Update. 2009;15(1):57-68.
Bruno RV, de Avila MA, Neves FB, Nardi AE, Crespo CM,
Sobrinho AT. Comparison of two doses of metformin (2.5 and 1.5
g/day) for the treatment of polycystic ovary syndrome and their
effect on body mass index and waist circumference. Fertil Steril.
;88(2):510-2.
McDonagh MS, Selph S, Ozpinar A, Foley C. Systematic review of
the benefits and risks of metformin in treating obesity in children
aged 18 years and younger. JAMA pediatr. 2014;168(2):178-84.
Khan AY, Macaluso M, McHale RJ, Dahmen MM, Girrens K, Ali
F. The adjunctive use of metformin to treat or prevent atypical
antipsychotic-induced weight gain: a review. J Psychiatr Pract.
;16(5):289-96.
Hasnain M, Fredrickson SK, Vieweg WV. Metformin for obesity and glucose dysregulation in patients with schizophrenia receiving
antipsychotic drugs. J Psychopharmacol. 2011;25(6):715-21.
Unnikrishnan IR, Anjana R, Mohan V. Importance of Controlling
Diabetes Early–The Concept of Metabolic Memory, Legacy Effect
and the Case for Early Insulinisation. J Assoc Physicians India.
;59Supplement:8-12.
Writing Team for the Diabetes C, Complications Trial/
Epidemiology of Diabetes I, Complications Research G. Effect of
intensive therapy on the microvascular complications of type 1
diabetes mellitus. JAMA. 2002;287(19):2563-9.
Wang PH, Lau J, Chalmers TC. Meta-analysis of effects of
intensive blood-glucose control on late complications of type I
diabetes. Lancet. 1993;341(8856):1306-9.
King P, Peacock I, Donnelly R. The UK prospective diabetes
study (UKPDS): clinical and therapeutic implications for type 2
diabetes. Br J Clin Pharmacol. 1999;48(5):643-8.
Barreto-Torres G, Soto Hernandez J, Jang S, Rodriguez-Munoz
AR, Torres-Ramos CA, Basnakian AG, et al. The beneficial effects
of AMP-kinase activation against oxidative stress are associated
with prevention of PPARalpha-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2015;308(7):749-58.
Zheng Z, Chen H, Li J, Li T, Zheng B, Zheng Y, et al. Sirtuin
-mediated cellular metabolic memory of high glucose via the
LKB1/AMPK/ROS pathway and therapeutic effects of metformin.
Diabetes. 2012;61(1):217-28.
Ceriello A. La memoria metabólicainducida por la hiperglucemia:
el nuevo reto en la prevención de la enfermedad cardiovascular
en la diabetes. Rev Esp Cardiol. 2008;8(C):12-18.
Peiro C, Romacho T, Azcutia V, Villalobos L, Fernandez E, Bolanos JP, et al. Inflammation, glucose, and vascular cell damage: the role of the pentose phosphate pathway. Cardiovasc Diabetol.
;15(1):82.
Bailey CJ. Metformin: effects on micro and macrovascular
complications in type 2 diabetes. Cardiovasc Drugs Ther.
;22(3):215-24.
Ewart MA, Kennedy S. AMPK and vasculoprotection. Pharmacol
Ther. 2011;131(2):242-53.
Lubos E, Handy DE, Loscalzo J. Role of oxidative stress and nitric
oxide in atherothrombosis. Front Biosci. 2008;13:5323-44.
Ceriello A, Quagliaro L, Catone B, Pascon R, Piazzola M, Bais
B, et al. Role of hyperglycemia in nitrotyrosine postprandial
generation. Diabetes Care. 2002;25(8):1439-43.
Hashiramoto M, Kaku K. Sirtuin 1 as a key player of ‘metabolic
memory’. J Diabetes Investig. 2013;4(1):34-6.
Winder WW, Hardie DG. AMP-activated protein kinase, a
metabolic master switch: possible roles in type 2 diabetes. Am J
Physiol. 1999;277(1 Pt 1):E1-10.
Ceriello A, Ihnat M, Ross K, Sismey A, Green DW, Kaltreider
RC. Evidence for a cellular “memory” of hyperglycemic stress.
Diabetes. 2005;54:218.
Park IH, Um JY, Hong SM, Cho JS, Lee SH, Lee SH, et al.
Metformin reduces TGF-beta1-induced extracellular matrix
production in nasal polyp-derived fibroblasts. Otolaryngol Head
Neck Surg. 2014;150(1):148-53.
Jang AH, Kim YW. Metformin Reduces Inflammation and Lung
Fibrosis in a Bleomycin-Induced Lung Injury Model (LB505). The
FASEB Journal. 2014;28 Supl 1:505.
Matsumoto K, Sera Y, Abe Y, Tominaga T, Yeki Y, Miyake S.
Metformin attenuates progression of carotid arterial wall
thickness in patients with type 2 diabetes. Diabetes Res Clin
Pract. 2004;64(3):225-8.
Katakami N, Yamasaki Y, Hayaishi-Okano R, Ohtoshi K,
Kaneto H, Matsuhisa M, et al. Metformin or gliclazide, rather
than glibenclamide, attenuate progression of carotid intimamedia
thickness in subjects with type 2 diabetes. Diabetologia.
;47(11):1906-13.
Li L, Mamputu JC, Wiernsperger N, Renier G. Signaling pathways
involved in human vascular smooth muscle cell proliferation
and matrix metalloproteinase-2 expression induced by leptin:
inhibitory effect of metformin. Diabetes. 2005;54(7):2227-34.
Takahashi N, Shibata R, Ouchi N, Sugimoto M, Murohara
T, Komori K. Metformin stimulates ischemia-induced
revascularization through an eNOS dependent pathway in the
ischemic hindlimb mice model. J Vasc Surg. 2015;61(2):489-96.
de Jager J, Kooy A, Schalkwijk C, van der Kolk J, Lehert P, Bets
D, et al. Long-term effects of metformin on endothelial function
in type 2 diabetes: a randomized controlled trial. J Intern Med.
;275(1):59-70.
Pitocco D, Zaccardi F, Tarzia P, Milo M, Scavone G, Rizzo P, et
al. Metformin improves endothelial function in type 1 diabetic
subjects: a pilot, placebo-controlled randomized study. Diabetes
Obes Metab. 2013;15(5):427-31.
Tousoulis D, Koniari K, Antoniades C, Miliou A, Noutsou M,
Nikolopoulou A, et al. Impact of 6 weeks of treatment with
low-dose metformin and atorvastatin on glucose-induced
changes of endothelial function in adults with newly diagnosed
type 2 diabetes mellitus: A single-blind study. Clin Ther.
;32(10):1720-8.
Zhang TX, Xu JX, Peng F, Chai DJ, Lin JX. Metformin reduces
vascular endothelial dysfunction caused by an acute glucose load
in patients with hypertension. Blood Press. 2013;22(2):106-13.
El Messaoudi S, Schreuder TH, Kengen RD, Rongen GA, van
den Broek PH, Thijssen DH, et al. Impact of metformin on
endothelial ischemia-reperfusion injury in humans in vivo: a
prospective randomized open, blinded-endpoint study. PLOS
ONE. 2014;9(4):e96062.
Cantoria MJ, Boros LG, Meuillet EJ. Contextual inhibition of fatty
acid synthesis by metformin involves glucose-derived acetyl-
CoA and cholesterol in pancreatic tumor cells. Metabolomics.
;10(1):91-104.
Geerling JJ, Boon MR, van der Zon GC, van den Berg SA, van
den Hoek AM, Lombes M, et al. Metformin lowers plasma
triglycerides by promoting VLDL-triglyceride clearance by brown
adipose tissue in mice. Diabetes. 2014;63(3):880-91.
Barnea M, Cohen-Yogev T, Chapnik N, Madar Z, Froy O. Effect of
metformin and lipid emulsion on the circadian gene expression
in muscle cells. Int J Biochem Cell Biol. 2014;53(1):151-61.
Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and
ABCG1 transporters in cholesterol efflux and immune responses.
Arterioscler Thromb Vasc Biol. 2010;30(2):139-43.
Li D, Zhang Y, Ma J, Ling W, Xia M. Adenosine monophosphate
activated protein kinase regulates ABCG1-mediated
oxysterol efflux from endothelial cells and protects against
hypercholesterolemia-induced endothelial dysfunction.
Arterioscler Thromb Vasc Biol. 2010;30(7):1354-62.
Pentikainen PJ, Voutilainen E, Aro A, Uusitupa M, Penttila
I, Vapaatalo H. Cholesterol lowering effect of metformin in
combined hyperlipidemia: placebo controlled double blind trial.
Ann Med. 1990;22(5):307-12.
Diehl LA, Fabris BA, Barbosa DS, De Faria EC, Wiechmann
SL, Carrilho AJ. Metformin increases HDL3-cholesterol and
decreases subcutaneous truncal fat in nondiabetic patients
with HIV-associated lipodystrophy. AIDS Patient Care STDS.
;22(10):779-86.
Cittadini A, Napoli R, Monti MG, Rea D, Longobardi S, Netti
PA, et al. Metformin prevents the development of chronic heart
failure in the SHHF rat model. Diabetes. 2012;61(4):944-53.
Evans JM, Ogston SA, Emslie-Smith A, Morris AD. Risk of
mortality and adverse cardiovascular outcomes in type 2
diabetes: a comparison of patients treated with sulfonylureas
and metformin. Diabetologia. 2006;49(5):930-6.
Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The
incidence of congestive heart failure in type 2 diabetes: an
update. Diabetes Care. 2004;27(8):1879-84
Nichols GA, Koro CE, Gullion CM, Ephross SA, Brown JB. The
incidence of congestive heart failure associated with antidiabetic
therapies. Diabetes Metab Res Rev. 2005 Feb;21(1):51-7.
Rosiak M, Postula M, Kaplon-Cieslicka A, Trzepla E, Czlonkowski
A, Filipiak KJ, et al. Metformin treatment may be associated with
decreased levels of NT-proBNP in patients with type 2 diabetes.
Adv Med Sci. 2013 Dec;58(2):362-8.
Yin M, van der Horst IC, van Melle JP, Qian C, van Gilst WH,
Sillje HH, et al. Metformin improves cardiac function in a
nondiabetic rat model of post-MI heart failure. Am J Physiol
Heart Circ Physiol. 2011 Aug;301(2):H459-68.
Whittington HJ, Hall AR, McLaughlin CP, Hausenloy DJ,
Yellon DM, Mocanu MM. Chronic metformin associated
cardioprotection against infarction: not just a glucose lowering
phenomenon. Cardiovasc Drugs Ther. 2013 Feb;27(1):5-16.
Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, et al. Acute metformin therapy confers cardioprotection against
myocardial infarction via AMPK-eNOS-mediated signaling.
Diabetes. 2008 Mar;57(3):696-705.
Elmadhun NY, Sabe AA, Lassaletta AD, Chu LM, Sellke FW.
Metformin mitigates apoptosis in ischemic myocardium. J Surg
Res. 2014 Nov;192(1):50-8.
Lexis CP, van der Horst IC, Lipsic E, Wieringa WG, de Boer RA,
van den Heuvel AF, et al. Effect of metformin on left ventricular
function after acute myocardial infarction in patients without
diabetes: the GIPS-III randomized clinical trial. JAMA. 2014
Apr;311(15):1526-35.
Li J, Xu JP, Zhao XZ, Sun XJ, Xu ZW, Song SJ. Protective effect of metformin on myocardial injury in metabolic syndrome patients
following percutaneous coronary intervention. Cardiology. 2014 Jan;127(2):133-9.
Calvert JW. Treating percutaneous coronary interventionrelated
myocardial injury with metformin. Cardiology. 2014 Jan;127(2):130-2.
Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur
SM, Habel LA, et al. Diabetes and cancer: a consensus report.
Diabetes Care. 2010 Jul;33(7):1674-85.
Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL, et al. Long-term all-cause mortality in cancer patients with preexisting
diabetes mellitus: a systematic review and meta-analysis. JAMA.
Dec;300(23):2754-64.
Kaaks R, Johnson T, Tikk K, Sookthai D, Tjonneland A, Roswall
N, et al. Insulin-like growth factor I and risk of breast cancer by
age and hormone receptor status-A prospective study within the
EPIC cohort. Int J Cancer. 2014 Jun;134(11):2683-90.
Krett NL, Heaton JH, Gelehrter TD. Mediation of insulinlike
growth factor actions by the insulin receptor in H-35 rat
hepatoma cells. Endocrinology. 1987 Jan;120(1):401-8.
Warburg O. On the origin of cancer cells. Science. 1956
Feb;123(3191):309-14.
Jalving M, Gietema JA, Lefrandt JD, de Jong S, Reyners AK, Gans RO, et al. Metformin: taking away the candy for cancer? Eur J
Cancer. 2010 Sep;46(13):2369-80.
Gallagher EJ, LeRoith D. Diabetes, cancer, and metformin:
connections of metabolism and cell proliferation. Ann N Y Acad
Sci. 2011 Dec;1243:54-68.
Bowker SL, Yasui Y, Veugelers P, Johnson JA. Glucoselowering
agents and cancer mortality rates in type 2 diabetes:
assessing effects of time-varying exposure. Diabetologia. 2010
Aug;53(8):1631-7.
Colhoun HM, Group SE. Use of insulin glargine and cancer
incidence in Scotland: a study from the Scottish Diabetes
Research Network Epidemiology Group. Diabetologia. 2009
Sep;52(9):1755-65.
Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering
therapies on cancer risk in type 2 diabetes. Diabetologia. 2009
Sep;52(9):1766-77.
Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans
JM. New users of metformin are at low risk of incident cancer: a
cohort study among people with type 2 diabetes. Diabetes Care.
Sep;32(9):1620-5.
Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris
AD. Metformin and reduced risk of cancer in diabetic patients.
BMJ. 2005;330(7503):1304-5.
Franciosi M, Lucisano G, Lapice E, Strippoli GF, Pellegrini
F, Nicolucci A. Metformin therapy and risk of cancer in
patients with type 2 diabetes: systematic review. PLoS One.
;8(8):e71583.
Ben Sahra I, Le Marchand-Brustel Y, Tanti JF, Bost F. Metformin
in cancer therapy: a new perspective for an old antidiabetic
drug?. Mol Cancer Ther. 2010;9(5):1092-9.
Del Barco S, Vazquez-Martin A, Cufi S, Oliveras-Ferraros
C, Bosch-Barrera J, Joven J, et al. Metformin: multi-faceted
protection against cancer. Oncotarget. 2011;2(12):896-917.
Shaw RJ. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf). 2009;196(1):65-80.
Huang X, Wullschleger S, Shpiro N, McGuire VA, Sakamoto K,
Woods YL, et al. Important role of the LKB1-AMPK pathway in
suppressing tumorigenesis in PTEN-deficient mice. Biochem J.
;412(2):211-21.
Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N.
Metformin inhibits mammalian target of rapamycin-dependent
translation initiation in breast cancer cells. Cancer Res.
;67(22):10804-12.
Esfahanian N, Shakiba Y, Nikbin B, Soraya H, Maleki-Dizaji N,
Ghazi-Khansari M, et al. Effect of metformin on the proliferation,
migration, and MMP-2 and -9 expression of human umbilical
vein endothelial cells. Mol Med Rep. 2012;5(4):1068-74.
Rattan R, Ali Fehmi R, Munkarah A. Metformin: an emerging new therapeutic option for targeting cancer stem cells and metastasis. J Oncol. 2012;2012:928127.
Xavier DO, Amaral LS, Gomes MA, Rocha MA, Campos PR, Cota
BD, et al. Metformin inhibits inflammatory angiogenesis in a murine sponge model. Biomed Pharmacother. 2010;64(3):220-5.
Ersoy C, Kiyici S, Budak F, Oral B, Guclu M, Duran C, et al. The
effect of metformin treatment on VEGF and PAI-1 levels in obese
type 2 diabetic patients. Diabetes Res Clin Pract. 2008;81(1):56-60.
Barriere G, Tartary M, Rigaud M. Metformin: a rising star to fight the epithelial mesenchymal transition in oncology. Anticancer
Agents Med Chem. 2013;13(2):333-40.
Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo
B, Joven J, Menendez JA. Metformin against TGFbeta-induced
epithelial-to-mesenchymal transition (EMT): from cancer stem
cells to aging-associated fibrosis. Cell cycle. 2010;9(22):4461-8.
Ben Sahra I, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti
P, Auberger P, et al. The antidiabetic drug metformin exerts an
antitumoral effect in vitro and in vivo through a decrease of
cyclin D1 level. Oncogene. 2008;27(25):3576-86.
Ben Sahra I, Regazzetti C, Robert G, Laurent K, Le Marchand-
Brustel Y, Auberger P, et al. Metformin, independent of AMPK,
induces mTOR inhibition and cell-cycle arrest through REDD1.
Cancer Res. 2011;71(13):4366-72.
Zhuang Y, Miskimins WK. Cell cycle arrest in Metformin treated
breast cancer cells involves activation of AMPK, downregulation
of cyclin D1, and requires p27Kip1 or p21Cip1. J Mol Signal.
;3:18.
Isakovic A, Harhaji L, Stevanovic D, Markovic Z, Sumarac-
Dumanovic M, Starcevic V, et al. Dual antiglioma action of
metformin: cell cycle arrest and mitochondria-dependent
apoptosis. Cell Mol Life Sci. 2007;64(10):1290-302.
Liu B, Fan Z, Edgerton SM, Deng XS, Alimova IN, Lind SE, et al.
Metformin induces unique biological and molecular responses in
triple negative breast cancer cells. Cell cycle. 2009;8(13):2031-40.
Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E,
Udono H. Immune-mediated antitumor effect by type 2 diabetes
drug, metformin. Proc Natl Acad Sci U.S.A. 2015;112(6):1809-14.
Goodwin PJ, Stambolic V. Obesity and insulin resistance in breast cancer--chemoprevention strategies with a focus on metformin. Breast. 2011;20(Suppl 3):S31-5.
Qu C, Zhang W, Zheng G, Zhang Z, Yin J, He Z. Metformin
reverses multidrug resistance and epithelial-mesenchymal
transition (EMT) via activating AMP-activated protein kinase
(AMPK) in human breast cancer cells. Mol Cell Biochem. 2014;386(1-2):63-71.
Iliopoulos D, Hirsch HA, Struhl K. Metformin decreases the
dose of chemotherapy for prolonging tumor remission in mouse
xenografts involving multiple cancer cell types. Cancer Res.
;71(9):3196-201.
Kim J, Lim W, Kim EK, Kim MK, Paik NS, Jeong SS, et al. Phase
II randomized trial of neoadjuvant metformin plus letrozole
versus placebo plus letrozole for estrogen receptor positive
postmenopausal breast cancer (METEOR). BMC Cancer.
Rocha GZ, Dias MM, Ropelle ER, Osorio-Costa F, Rossato FA,
Vercesi AE, et al. Metformin amplifies chemotherapy-induced
AMPK activation and antitumoral growth. Clin Cancer Res.
;17(12):3993-4005.
Hwang IC, Park SM, Shin D, Ahn HY, Rieken M, Shariat SF.
Metformin Association with Lower Prostate Cancer Recurrence
in Type 2 Diabetes: a Systematic Review and Meta-analysis.
Asian Pac J Cancer Prev. 2015;16(2):595-600.
Raval AD, Thakker D, Vyas A, Salkini M, Madhavan S,
Sambamoorthi U. Impact of metformin on clinical outcomes
among men with prostate cancer: a systematic review and metaanalysis. Prostate Cancer Prostatic Dis. 2015;18:110-21.
Yu H, Yin L, Jiang X, Sun X, Wu J, Tian H, et al. Effect of
metformin on cancer risk and treatment outcome of prostate
cancer: a meta-analysis of epidemiological observational studies.
PLoS One. 2014;9(12):e116327.
Col NF, Ochs L, Springmann V, Aragaki AK, Chlebowski RT.
Metformin and breast cancer risk: a meta-analysis and critical
literature review. Breast Cancer Res Treat. 2012;135(3):639-46.
Rego DF, Pavan LM, Elias ST, De Luca Canto G, Guerra EN.
Effects of metformin on head and neck cancer: A systematic
review. Oral Oncol. 2015;51(5):416-22.
Sakoda LC, Ferrara A, Achacoso NS, Peng T, Ehrlich SF,
Quesenberry CP, Jr., et al. Metformin use and lung cancer
risk in patients with diabetes. Cancer Prev Res (Phila). 2015;8(2):174-9.
Zhang ZJ, Bi Y, Li S, Zhang Q, Zhao G, Guo Y, et al. Reduced
risk of lung cancer with metformin therapy in diabetic patients:
a systematic review and meta-analysis. Am J Epidemiol.
;180(1):11-4.
Wang Z, Lai ST, Xie L, Zhao JD, Ma NY, Zhu J, et al. Metformin
is associated with reduced risk of pancreatic cancer in patients
with type 2 diabetes mellitus: a systematic review and metaanalysis.
Diabetes Res Clin Pract. 2014;106(1):19-26.
Pinilla AE. Construcción y evaluación de un perfil de
competencias profesionales en medicina interna. Colección
Desarrollo Humano. Bogotá: Editorial Universidad Nacional de
Colombia; 2015.
Patiño JF. Humanismo, medicina y ciencia. En: Silva G (Ed.).
Colección Obra Selecta. Bogotá: Editorial Universidad Nacional
de Colombia; 2011.
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2017 Médicas UIS