Perfil de acilcarnitinas en una población adulta colombiana como herramienta diagnóstica de las deficiencias de la oxidación mitocondrial de los ácidos grasos
PDF (Español (España))

How to Cite

Osorio, J. H., & Pourfarzam, M. (2008). Perfil de acilcarnitinas en una población adulta colombiana como herramienta diagnóstica de las deficiencias de la oxidación mitocondrial de los ácidos grasos. Médicas UIS, 21(1). Retrieved from https://revistas.uis.edu.co/index.php/revistamedicasuis/article/view/125

Abstract

INTRODUCTION: the acylcarnitines measurement in blood is a useful test for the diagnosis of inherited errors of fatty acid mitochondrial β-oxidation, however there is little data in the literature regarding the reference ranges of various acylcarnitines and whether these reference ranges are age or sex dependent. The aims of this work are to draw the attention to inherited disorders of mitochondrial fatty acid b-oxidation and to establish reference values for acylcarnitines in adults using tándem mass spectrometry. 

PATIENTS AND METHODS: 316 blood samples normal adults, 158 male, 158 female, with a range of age between 18 and 58 years, were obtained and analysed using tándem mass spectrometry. 

RESULTS AND CONCLUSION: No significant differences were found related to sex; the interval and average values ± standard deviation are presented. It is important to remark the absence of hydroxyacylcarnitines and glutaryl carnitine processing normal samples. Was reviewed the literature related to the main clinical and laboratory findings in mitochondrial fatty acid b-oxidation deficiencies.

Keywords: Tándem mass spectrometry. Fatty acids. Metabolism. Inherited inborn errors.

PDF (Español (España))

References

1.Mc Garry JD, Foster DW. Regulation of hepatic fatty acid oxiation and ketone body production. Annu Rev Biochem.1980;49:395-420.

2.Eaton S, Bartlett K, Pourfarzam M. Mammalian mitochondria β-oxidation. Biochem J.1996;320:345-57.

3.Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat. Physiol Rev.1984;64:1-64.

4.Stanley CA, Hale DE, Coates PM, Hall CL, Corkey BE, Yang W, et al. Medium-chain acyl-CoA dehydrogenase deficiency in children with non-ketotic hypoglycemia and low carnitine levels. Pediatr Res. 1983;17:877-84.

5.Rhead WJ, Amendt A, Fritchman KS, Felts SJ. Dicarboxylic aciduria: deficient [1-14C] octanoate oxidation and medium chain acyl-CoA dehydrogenase in fibroblasts. Science. 1983; 221:73-5.

6.Yokota I, Coates PM, Hale DE, Rinaldo P, Tanaka K. Molecular survey of a prevalent muation, A985-to-G transition, and identification of five infrequent mutations in the medium-chain acyl-CoA dehydrogenase gene in 55 patients with medium-chain acyl-CoA dehydrogenase deficiency. Am J Hum Genet.1991;47:1280-91.

7.Ijlst L, Wanders RJA, Ushikubo S, Kamijo K, Hashimoto T. Molecular basis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of the major disease-causing mutation in the B-subunit of the mitochondrial trifunctional protein. Biochim Biophys Acta. 1994;1215:347-50.

8.Olpin SE, Clark S, Andresen BS, Bischoff C, Olsen RK, Gregersen N, Chakrapani A, Downing M, Manning NJ, Sharrard M, Bonham JR, Muntoni F, Turnbull DN, Pourfarzam M. Biochemical, clinical and molecular findings in LCHAD and general mitochondrial trifunctional protein deficiency. J Inherit Metab Dis. 2005;28:533-44.

9.Vockley J, Singh RH, Whiteman DA. Diagnosis and management of defects of mitochondrial beta-oxidation. Curr Opin Clin Nutr Metab Care. 2002;5:601-9.

10.Halldin MU, Forslund A, von Dobeln U, Eklund C, Gustafsson J. Related Articles, Increased lipolysis in LCHAD deficiency.J Inherit Metab Dis. 2007;30(1):39-46.

11.Longo N, Amat di San Filippo C, Pasquali M. Disorders of carnitine transport and the carnitine cycle.Am J Med Genet C Semin Med Genet. 2006;15:142:77-85.

12.Millington DS, Chace DH, Hillman SL, Kodo N, Terada N. Diagnosis of metabolic disease. In Matsudo T, Capriolo RM, Gross ML, Sevama Y, eds. Biological mass spectrometry: present and future. New York: Wiley; 1994. p. 559-79.

13.Rashed MS, Bucknall MP, y Little D. Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles. Clin. Chem. 1997;43(7):1129-41.

14.Roe RC, Coates P.M. Mitochondrial fatty acid oxidation disorders. In: Scriver CR, Beaudet, Sly WS, Valle D eds. The metabolic and molecular bases of inherited disease, 7th ed. New York, Mc Graw-Hill, Inc. 1995;45:1501-33.

15.Stanley CA, Hale DE. Genetic disorders of mitochondrial fatty acid oxidation. Curr Opin Pediatr. 1994;6:476-81.

16.Pollit RJ. Disorders of mitochondrial long-chain fatty acid oxidation. J Inher Metab Dis. 1995;18:473-90.

17.Osorio JH, Lluc M, Ribes A. Analysis of organic acids after incubation with (16-2H3) palmitic acid in fibroblasts from patients with mitochondrial b-oxidation defects. J Inher Metab Dis. 2003;26:795-803.

18.Osorio JH, Oxidación de un sustrato tritiado por linfocitos para el diagnóstico rápido de alteraciones metabólica. Biosalud. 2007;6:25-32.

19.Osorio JH, Pourfarzam M. Early diagnosis of neurometabolic diseases by tandem mass spectrometry. Acylcarnitine profile from cord blood. Rev Neurol. 2004;38:111-6.

20.Zytkovicz TH, Fitzgerald EF, Marsden D, Larson CA, Shih VE, Johnson DM, et al. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. Clin. Chem. 2001;47(11):1945-55.

21.Cavedon CT, Bourdoux P, Mertens K, Van Thi HV, Herremans N, de Laet C, Goyens P. Age-related variations in acylcarnitine and free carnitine concentrations measured by tandem mass spectrometry. Clin Chem. 2005;51: 745-52.

22.Osorio JH, Pourfarzam M. Determinación de valores normales de acilcarnitinas en una población infantilsana como herramienta diagnósticade errores hereditarios de la β-oxidación mitocondrial de los ácidos grasos. An. Pediatr. (Barc). 2007;67(6):548-52.

Downloads

Download data is not yet available.