Vol. 20 Núm. 1 (2021): Revista UIS Ingenierías
Artículos

Released power in a vortex-antivortex pairs annihilation process

Cristian Aguirre-Tellez
Universidade Federal de Mato Groso
Miryam Rincón-Joya
Universidad Nacional de Colombia
José José Barba-Ortega
Universidad Nacional de Colombia

Publicado 2020-11-10

Palabras clave

  • Ginzburg-Landau,
  • mesoscópico,
  • magnetización,
  • vórtices

Cómo citar

Aguirre-Tellez, C., Rincón-Joya, M., & Barba-Ortega, J. J. (2020). Released power in a vortex-antivortex pairs annihilation process. Revista UIS Ingenierías, 20(1), 153–160. https://doi.org/10.18273/revuin.v20n1-2021014

Resumen

En este trabajo, estudiamos el proceso de disipación de calor de un par vórtice-antivortice de Shubnikov en un cuadrado superconductor mesoscópico con un defecto cuadrado concéntrico en presencia de un campo magnético externo oscilatorio. Las ecuaciones dependientes del tiempo de Ginzburg-Landau y la ecuación de difusión se resolvieron numéricamente. El resultado principal es que la disipación térmica está asociada con una relajación considerable de los electrones superconductores de modo que la potencia liberada en este tipo de proceso podría calcularse en función del tiempo. Además, analizamos el efecto que tienen los parámetros de Ginzburg-Landau κ y deformación τ dentro del defecto, sobre la magnetización, potencia disipada y densidad de superelectrónes.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] M. Tinkham, “Effect of fluxoid quantization on transitions of superconducting films,” Physical Review, no. 129, p. 2413, 1963, doi: 10.1103/PhysRev.129.2413

[2] L. Komendova, M. V. Milosević, A. A. Shanenko, F. M. Peeters, “Different length scales for order parameters in two-gap superconductors: Extended Ginzburg-Landau theory,” Physical Review B, no. 84, p. 064522, 2011, doi: 10.1103/PhysRev.129.2413

[3] E. D. V. Nino, A. D. Lantada, J. Barba-Ortega, “Vortex matter in a superconducting square under 2D thermal gradient,” Journal of Low Temperature Physics, no. 195, p. 202, 2019, doi: 10.1007/s10909-019-02158-x

[4] C. A. Aguirre, H. Blas, J. Barba-Ortega, “Mesoscale vortex pinning landscapes in a two component superconductor,” Physica C, no. 554, p. 8, 2018, doi: 10.1016/j.physc.2018.08.010

[5] G. R. Berdiyorov, X. H. Chao, F. M. Peeters, H. B. Wang, V. V. Moshchalkov, B. Y. Zhu, “Magnetoresistance oscillations in superconducting strips: A Ginzburg-Landau study,” Physical Review B, no. 86, p. 224504, 2012, doi: 10.1103/PhysRevB.86.224504

[6] G. Berdiyorov, A. R. de C. Romaguera, M. V. Milosević, M. M. Doria, L. Covaci, F. M. Peeters, “Dynamic and static phases of vortices under an applied drive in a superconducting stripe with an array of weak links,” Europhysics Journal B, no. 85, p. 130, 2012, doi: 10.1140/epjb/e2012-30013-7

[7] G. R. Berdiyorov, M. V. Milosević, M. L. Latimer, Z. L. Xiao, W. K. Kwok, F. M. Peeters, “Large magnetoresistance oscillations in mesoscopic superconductors due to currentexcited moving vortices,” Physical Review Letters, no. 109, p. 057004, 2012, doi: 10.1103/PhysRevLett.109.057004

[8] E. Sardella, P. N. L. Filho, C. C. Silva, L. R. E. Cabral, W. A. Ortiz, “Vortex-antivortex annihilation dynamics in a square mesoscopic superconducting cylinder,” Physical Review B, vol. 80, p. 012506, 2009, doi: 10.1103/PhysRevB.80.012506

[9] R. Zadorosny, E. C. S. Duarte, E. Sardella, W. A. Ortiz, “Vortex-antivortex annihilation in mesoscopic superconductors with a central pinning center,” Physica C, vol. 503, p. 94, 2014, doi: 10.1016/j.physc.2014.04.007

[10] A. Gomes, E. M. Gonzalez, D. A. Gilbert, M. V. Milosević, L. Kai, J. L. Vicent, “Probing the dynamic response of antivortex, interstitial and trapped vortex lattices on magnetic periodic pinning potentials,” Superconductor Science and Technology, no. 26, p. 085018, 2013, doi: 10.1088/0953-2048/26/8/085018

[11] A. V. Kapra, V. R. Misko, D. Y. Vodolazov, F. M. Peeters, “The guidance of vortex antivortex pairs by in-plane magnetic dipoles in a superconducting finite size film,” Superconductor Science and Technology, no. 24, p. 024014, 2011, doi: 10.1088/0953-2048/24/2/024014

[12] V. N. Gladilin, J. Tempere, J. T. Devreese, V. V. Moshchalkov, “Stable antiferromagnetic vortex lattice imprinted into a type-II superconductor,” New Journal of Physics, no. 14, p. 103021, 2012,

[13] I. Shapiro, E. Pechenik, B. Y. Shapiro, “Recovery of superconductivity in a quenched mesoscopic domain,” Physical Review B, vol. 63, p. 184520, 2001, doi: 10.1103/PhysRevB.63.184520

[14] M. Ghinovker, B. Y. Shapiro, I. Shapiro, “Spontaneous magnetic-flux generation in superconducting ring,” Physical Review B, vol. 53, p. 240, 2001, doi: 10.1209/epl/i2001-00143-x

[15] D. R. Gulevich, F. V. Kusmartsev, “Fluxon collider for multiple fluxon antifluxon collisions,” New Journal of Physics, no. 9, p. 59, 2007, doi: 10.1088/1367-2630/9/3/059

[16] E. C. S. Duarte, E. Sardella, W. A. Ortiz, R. Zadorosny, “Dynamics and heat diffusion of abrikosovs vortex antivortex pairs during an annihilation process,” Journal of Physics: Condensed Matter, no. 29, p. 40, 2017.

[17] J. Barba-Ortega, E. Sardella, J. A. Aguiar, “Vortex antivortex dynamics in a mesoscopic superconducting prism with a centered antidot,” Journal of Superconductivity and Novel Magnetism, no. 24, p. 97, 2011, doi: 10.1007/s10948-010-0904-8

[18] A. Schimd, “A time dependent Ginzburg - Landau equation and its application to the problem of resistivity in the mixed state,” Physik der Kondensierten Materie, no. 5, p. 302, 1966, doi: 10.1007/BF02422669

[19] I. Petkovic, A. Lollo, L. I. Glazman, J. G. E. Harris, “Deterministic phase slips in mesoscopic superconducting rings,” Nature Communicatios, no. 7, p. 13551, 2016, doi: 10.1038/ncomms13551

[20] C. A. Aguirre, Q. Martins, J. Barba-Ortega, “Desarrollo analítico de las ecuaciones Ginzburg - Landau para películas delgadas superconductoras en presencia de corrientes,” Revista UIS Ingenierías, no. 18, p. 213, 2019, doi: 10.18273/revuin.v18n2-2019020

[21] J. Barba-Ortega, E. Sardella, J. A. Aguiar, “Superconducting properties of a parallelepiped mesoscopic superconductor: A comparative study between the 2D and 3D ginzburglandau models,” Physics Letters A, no. 379, p. 732, 2015, doi: 10.1016/j.physleta.2014.12.030

[22] C. A. Aguirre, M. R. Joya, J. Barba-Ortega, “Dimer structure as topological pinning center in a superconducting sample,” Revista UIS Ingenierías, no. 19, p. 119, 2020, doi: 10.18273/revuin.v19n1-2020011

[23] W. D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M. Palumbo, V. M. Vinokur, “Numerical simulation of vortex dynamics in type-II superconductors,” J. Comput. Phys., vol. 123, p. 254, 1996, doi: 10.1006/jcph.1996.0022

[24] G. C. Buscaglia, C. Bolech, A. López, Connectivity and Superconductivity. Springer, Berlin, 2000.

[25] L. Kramer, R. J. Watts-Tobin, “Theory of dissipative current-carrying states in superconducting filaments,” Phisical Review Letteres, no. 40, p. 1041, 1978, doi: 10.1103/PhysRevLett.40.1041