Vol. 16 Núm. 1 (2017): Revista UIS Ingenierías
Artículos

Evaluación de las propiedades tribológicas de materiales compuestos de matriz metálica (MMCs) procesados por técnicas de fabricación aditiva con haz láser (SLM)

Elkin Martínez
Instituto Tecnológico Metalmecánico, Mueble, Madera, Embalaje y Afines, AIDIMME
Biografía
Octavio Andrés González-Estrada
Universidad Industrial de Santander
Biografía
Alejandro Martínez
Grupo Nuevas Tecnologías, Universidad de Santander
Biografía

Publicado 2016-12-10

Palabras clave

  • Ensayo “pin-on-disk”,
  • coeficiente de fricción,
  • tasa de desgaste,
  • materiales compuestos de matriz metálica (MMCs),
  • fabricación aditiva (AM),
  • fusión selectiva con láser (SLM),
  • superficie de desgaste modelo
  • ...Más
    Menos

Cómo citar

Martínez, E., González-Estrada, O. A., & Martínez, A. (2016). Evaluación de las propiedades tribológicas de materiales compuestos de matriz metálica (MMCs) procesados por técnicas de fabricación aditiva con haz láser (SLM). Revista UIS Ingenierías, 16(1), 101–114. https://doi.org/10.18273/revuin.v16n1-2017010

Resumen

En este artículo se investigaron las propiedades mecánicas y tribológicas de materiales compuestos de matriz de acero (acero inoxidable 316L reforzado con partículas cerámicas Cr3C2) procesados por tecnologías de fabricación aditiva de fusión selectiva con láser (SLM). Se estudió el comportamiento a desgaste con el ensayo “pin-on-disk” a temperatura ambiente y se observó la superficie desgastada mediante microscopía electrónica de barrido (SEM). Los resultados indicaron que el coeficiente de fricción no tiene una tendencia clara o relación directa cuando se varía el porcentaje de refuerzo mientras que la tasa de desgaste disminuye con el aumento del contenido de refuerzo. Las mejores propiedades se obtuvieron con un 6% en peso de refuerzo.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Wohlers T. Wohlers Report 2010: Additive Manufacturing State of the Industry –Annual Worldwide Progress Report, Wohlers Associates, Inc., ISBN 0-9754429-6-1
  2. ASTM F2792-10 Standard Terminology for Additive Manufacturing Technologies, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428
  3. Olakanmi, E. O., Cochrane, R. F., & Dalgarno, K. W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Progress in Materials Science, 2015, vol. 74, p. 401-477.
  4. Ma, M., Wang, Z., Gao, M., & Zeng, X. (2015). Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel. Journal of Materials Processing Technology, 2015, vol. 215, p. 142-150.
  5. Casalino, G., Campanelli, S. L., Contuzzi, N., & Ludovico, A. D. Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Optics & Laser Technology, 2015, vol. 65, p. 151-158.
  6. Li, R., Shi, Y., Wang, Z., Wang, L., Liu, J., & Jiang, W. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Applied Surface Science, 2010, 256(13), p. 4350-4356.
  7. Zhang, B., Dembinski, L., & Coddet, C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Materials Science and Engineering: A, 2013, vol. 584, p. 21-31.
  8. K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, and J. Eckert: Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng., A 590, 153 (2014).
  9. K.G. Prashanth, B. Debalina, Z. Wang, P.F. Gostin, A. Gebert, M. Calin, U. Kühn, M. Kamaraj, S. Scudino, and J. Eckert: Tribological and corrosion properties of Al-12Si produced by selective laser melting. J. Mater. Res. 29, 2044 (2014).
  10. L. Thijs, K. Kempen, J-P. Kruth, and J. Van Humbeeck: Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 61, 1809 (2013).
  11. D.D. Gu, Y-C. Hagedorn, W. Meiners, G.B. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe: Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60, 3849 (2012).
  12. N. Otawa, T. Sumida, H. Kitagaki, K. Sasaki, S. Fujibayashi, M. Takemoto, T. Nakamura, T. Yamada, Y. More, and T. Matsushita: Custom-made titanium devices as membranes for bone augmentation in implant treatment: Modeling accuracy of titanium products constructed with selective laser melting. J. Cranio Maxill. Surg. 43, 1289 (2015).
  13. S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier: On the mechanical behavior of titanium alloy Ti6Al4V manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int. J. Fatigue 48, 300 (2013).
  14. B. Vrancken, L. Thijs, J-P. Kruth, and J. Van Humbeeck: Microstructure and mechanical properties of a novel  titanium metallic composite by selective laser melting. Acta Mater. 68, 150 (2014).
  15. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina: Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 60, 2229 (2012).
  16. T. Vilaro, C. Colin, J.D. Bartout, L. Naze, and M. Sennour: Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy. Mater. Sci. Eng., A 534, 446 (2012).
  17. I. Shishkovsky, I. Yadroitsev, and I. Smurov: Direct selective laser melting of nitinol powder. Phys. Procedia 39, 447 (2012).
  18. K.A. Mumtaz, P. Erasenthiran, and N. Hopkinson: High density selective laser melting of waspaloy. J. Mater. Process Technol. 195, 77 (2008).
  19. Y.S. Hedberg, B. Qian, Z.J. Shen, S. Virtanen, and I.O. Wallinder: In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting. Dent. Mater. 30, 525 (2014).
  20. X. Zhou, K.L. Li, D.D. Zhang, X.H. Liu, J. Ma, W. Liu, and Z.J. Shen: Textures formed in a CoCrMo alloy by selective laser melting. J. Alloys Compd. 631, 153 (2015).
  21. Lykov, P. A., Safonov, E. V., & Akhmedianov, A. M. Selective Laser Melting of Copper. In Materials Science Forum, 2016, Vol. 843, p. 284-288.
  22. Zhang, D. Q., Liu, Z. H., & Chua, C. K. Investigation on forming process of copper alloys via Selective Laser Melting. In High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping: Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 1-5 October, 2013, p. 285.
  23. Attar, H., Prashanth, K. G., Chaubey, A. K., Calin, M., Zhang, L. C., Scudino, S., & Eckert, J. Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Materials Letters, 2015, vol. 142, p. 38-41.
  24. B. Song, S.J. Dong, P. Coddet, G.S. Zhou, S. Ouyang, H.L. Liao, and C. Coddet: Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting. J. Alloys Compd. 579, 415 (2013).
  25. L. Hao, S. Dadbakhsh, O. Seaman, and M. Felstead. Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development. J. Mater. Process. Technol. 209, 5793 (2009).
  26. H. Attar, L. Löber, A. Funk, M. Calin, L.C. Zhang, K.G. Prashanth, S. Scudino, Y.S. Zhang, and J. Eckert. Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting. Mater. Sci. Eng., A 625, 350 (2015).
  27. Gu, D., Meng, G., Li, C., Meiners, W., & Poprawe, R. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement. Scripta Materialia, 2012, 67(2), p. 185-188.
  28. Gu, D., Wang, H., Dai, D., Chang, F., Meiners, W., Hagedorn, Y. C., Wissenbach K., Kelbassa I., and Poprawe, R. Densification behavior, microstructure evolution, and wear property of TiC nanoparticle reinforced AlSi10Mg bulk-form nanocomposites prepared by selective laser melting. Journal of Laser Applications, 2015, 27(S1), S17003.
  29. S. Dadbakhsh, L. Hao, P.G.E. Jerrard, and D.Z. Zhang. Experimental investigation on selective laser melting behavior and processing windows on in situ reacted Al/Fe2O3 powder mixture. Powder Technol. 231, 112 (2012).
  30. RAJPOOT, Shalini. Synthesis and characterization of chromium carbide (Cr3C2) nanoparticles. 2013. Tesis Doctoral. Thapar University Patiala.
  31. ASTM E407-07(2015)e1, Standard Practice for Microetching Metals and Alloys, ASTM International, West Conshohocken, PA, 2015, www.astm.org
  32. ASTM E18-05, Standard Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, 2005, www.astm.org
  33. ASTM G99-05(2016), Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, PA, 2016, www.astm.org
  34. Zhou, S., Zeng, X., Hu, Q., & Huang, Y. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization. Applied Surface Science, 2008, 255(5), p. 1646-1653.
  35. Kadolkar, P. B., Watkins, T. R., De Hosson, J. T. M., Kooi, B. J., & Dahotre, N. B. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys. Acta Materialia, 2007, 55(4), p. 1203-1214.
  36. Ghosh, S. K., & Saha, P. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process. Materials & Design, 2011, 32(1), p. 139-145.
  37. Sulima, I. Tribological Properties of Steel/Tib2 Composites Prepared by Spark Plasma Sintering. Archives of Metallurgy and Materials, 2014, vol. 59, no 4, p. 1263-1268.