Vol. 22 No. 2 (2023): Revista UIS Ingenierías
Articles

Phase diagrams J1(τ) and J1(γ) de un filme superconductor

Omar Yamid Vargas
Universidad Nacional de Colombia
Miryam Rincón-Joya
Universidad Nacional de Colombia
José José Barba-Ortega
Universidad Nacional de Colombia

Published 2023-04-06

Keywords

  • Ginzburg-Landau,
  • mesoscopic,
  • superconductor,
  • kinematic vortices

How to Cite

Vargas , O. Y., Rincón-Joya , M. ., & Barba-Ortega, J. J. (2023). Phase diagrams J1(τ) and J1(γ) de un filme superconductor. Revista UIS Ingenierías, 22(2), 57–64. https://doi.org/10.18273/revuin.v22n2-2023005

Abstract

In this contribution we use the time-dependent Ginzburg-Landau theory in the presence of currents and at zero magnetic fields, to investigate the kinematic vortices dynamics in a mesoscopic superconducting sheet with a thin central pillar. Our study covers two cases: (a) a central pillar whose height, simulated via  T>1;0 parameter, is varied with a superconducting-vacuum interface throughout the whole sample. simulated via γ = 1;0 parameter; (b) a central pillar with a superconducting-superconducting boundary condition at the highest critical temperature Tc, (γ > 1;0); we also considered a homogeneous sample, that is, without a pillar T= 1;0. We analyze the influence of different boundary conditions on the kinematic vortex state and its effects on the magnetic response by analyzing the current-voltage and resistivity-current curves; the rate of annihilation of the vortex-antivortex pairs is also calculated as a function of the applied current for various boundary conditions. The results show that the critical currents and dynamics of kinematic vortex annihilation are highly dependent on pillar height and boundary conditions.

Downloads

Download data is not yet available.

References

  1. A. Andronov, I. Gordion, V. Kurin, I. Nefedov, I.Shereshevsky, “Kinematic vortices and phase slip lines in the dynamics of the resistive state of narrow superconductive thin film channels,” Physica C, no. 193, p. 213, 1993.
  2. A. G. Sivakov, A. M. Glukhov, A. N. Omelyanchouk, Y. Kovalv, P. Muller, A. V. Ustinov, “Josephson behavior of phase-slip lines in wide superconducting strips,” Phys. Rev. Lett., no. 91, p. 267001, 2003, doi: https://doi.org/10.1103/PhysRevLett.91.267001
  3. W. J. Skocpol, M. R. Beasley, M. Tinkham, “Self heating hotspots in superconducting thin film microbridges,” J. Appl. Phys., no. 45, p.4054, 1974, doi: https://doi.org/10.1063/1.1663912
  4. J. Barba-Ortega, E. Sardella, and R. Zadorosny, “Influence of the deGennes extrapolation parameter on the resistive state of a superconducting strip,” Physics Letters A, no. 382, p. 215, 2018, doi: https://doi.org/10.1016/j.physleta.2017.11.010
  5. G. R. Berdiyorov, X. H. Chao, F. M. Peeters, H. B. Wang, V. V. Moshchalkov, and B. Y. Zhu, “Magnetoresistance oscillations in superconducting strips: A Ginzburg-Landau study,” Physical Review B, no. 86, p. 224504, 2012, doi: https://doi.org/10.1103/PhysRevB.86.224504
  6. G. Berdiyorov, A. R. de C. Romaguera, M. V. Milosevic, M. M. Doria, L. Covaci, F. M. Peeters, “Dynamic and static phases of vortices under an applied drive in a superconducting stripe with an array of weak links,” Europhysics Journal B, no. 85, p. 130, 2012, doi: https://doi.org/10.1140/epjb/e2012-30013-7
  7. G. R. Berdiyorov, M. V. Milosevic, M. L. Latimer, Z. L. Xiao, W. K. Kwok, F. M. Peeters, “Large magnetoresistance oscillations in mesoscopic superconductors due to currentexcited moving vortices,” Physical Review Letters, no. 109, p. 057004, 2012, doi: https://doi.org/10.1103/PhysRevLett.109.057004
  8. A. Schimd, “A time dependent Ginzburg – Landau equation and its application to the problem of resistivity in the mixed state,” Physik der Kondensierten Materie, no. 5, p. 302, 1966, doi: https://doi.org/10.1007/BF02422669
  9. I. Petkovic, A. Lollo, L. I. Glazman, J. G. E.Harris, “Deterministic phase slips in mesoscopic superconducting rings,” Nature Communicatios, no. 7, p. 13551, 2016, doi: https://doi.org/10.1038/ncomms13551
  10. E. C. S. Duarte, E. Sardella, W. A. Ortiz, R. Zadorosny, “Dynamics and heat diffusion of abrikosovs vortex antivortex pairs during an annihilation process,” Journal of Physics: Condensed Matter, no. 29, p. 40, 2017, doi: https://doi.org/10.1088/1361-648X/aa81e6
  11. L. Rodrigues-Cadorim, A. de Oliveira Junior, E. Sardella, “Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-field,” Scientific Reports, no. 10, p. 18662, 2020, doi: https://doi.org/10.1038/s41598-020-75748-5
  12. A. Presotto, E. Sardella, A. Malvezzi, R. Zadorosny, “Dynamical regimes of kinematic vortices in the resistive state of a mesoscopic superconducting bridge,” Journal of Physics: Condensed Matter, no. 32, p. 435702, 2020, doi: https://doi.org/10.1088/1361-648X/aba5a3
  13. C. A. Aguirre, Q. Martins, J. Barba-Ortega, “Desarrollo analítico de las ecuaciones Ginzburg - Landau para películas delgadas superconductoras en presencia de corrientes,” Revista UIS Ingenierías, no. 18, p. 213, 2019, doi: https://doi.org/10.18273/revuin.v18n2-2019020
  14. C. A. Aguirre, M. R. Joya, J. Barba-Ortega, “Dimer structure as topological pinning center in a superconducting sample,” Revista UIS Ingenierias, no. 19, p. 119, 2020, doi: https://doi.org/10.18273/revuin.v19n1-2020011
  15. C. A. Aguirre, E. D. V. Nino, J. Barba-Ortega, “Estado de veces en un cuadrado superconductor de dos-orbitales con condiciones de contorno mixtas,” Revista Ingenio, no. 15, p. 38, 2018, doi: https://doi.org/10.22463/issn.2011-642X
  16. J. B. Ortega, J. Faúndez-Chaura, M. R. Joya, “Curva voltaje-tiempo en un proceso aniquilación-creación de pares vórtice-antivórtice,” Revista Ingenio, no. 15, p. 31, 2018, doi: https://doi.org/10.22463/issn.2011-642X
  17. W. Wang, R. D-Mez, M. Wallin, J. Lidmar, E. Babaev, “Pinning effects in a two-dimensional cluster glass,” Physical Review B, no. 104, p. 144206, 2021, doi: https://doi.org/10.1103/PhysRevB.104.144206
  18. A. Samoilenka, E. Babaev, “Microscopic derivation of superconductor-insulator boundary conditions for Ginzburg-Landau theory revisited: Enhanced superconductivity at boundaries with and without magnetic field,” Physical Review B, no. 103, p. 224516, 2021, doi: https://doi.org/10.1103/PhysRevB.103.224516
  19. A. Benfenati, A. Samoilenka, E. Babaev, “Boundary effects in two-band superconductors,” Physical Review B, no. 103, p. 224516, 2021, doi: https://doi.org/10.1103/PhysRevB.103.144512
  20. V. Grinenko, D. Weston, F. Caglieris, C. Wuttke, C. Hess, T. Gottschall, I. Maccari, D. Gorbunov, S. Zherlitsyn, J. Wosnitza, A. Rydh, K. Kihou, C. H. Lee, R. Sarkar, S. Dengre, J. Garaud, A. Charnukha, R.Huhne, K. Nielsch, B. Buchner, H. Klauss, E. Babaev, “State with spontaneously broken time-reversal symmetry above the superconducting phase transition,” Nature Physics, no. 17, p. 1254, 2021, doi: https://doi.org/10.1038/s41567-021-01350-9
  21. W. D. Gropp, H. Kaper, G. K. Leaf, D. M. Levine, Palumbo, V. M. V. M. Vinokur, “Numerical simulation of vortex dynamics in type-II superconductors,” Journal of Computational Physics, vol. 123, p. 254, 1996, doi: https://doi.org/10.1006/jcph.1996.0022
  22. G. C. Buscaglia, C. Bolech, A. López, Connectivity and Superconductivity. Berger, J. and Rubinstein, J. Springer, Berlin, 2000.
  23. L. Kramer, R. J. Watts-Tobin, “Theory of dissipative current-carrying states in superconducting filaments,” Phisical Review Letteres, no. 40, p. 1041, 1978, doi: https://doi.org/10.1103/PhysRevLett.40.1041
  24. Q. Du, M. Gunzburger, J. S. Peterson, “A model for superconducting thin films having variable thickness,” Physica D: Nonlinear Phenomena, vol. 69, no. 3-4, 1993, doi: https://doi.org/10.1016/0167-2789(93)90089-J
  25. Q. Du, M. Gunzburger, J. S. Peterson, “Modeling and analysis of a periodic Ginzburg-Landau model for type-ii superconductors,” SIAM Journal on Applied Mathematics, vol. 53 no. 3, pp. 689-717, 1993, doi: https://www.jstor.org/stable/2102434
  26. J. Barba-Ortega, M. R. Joya, E. Sardella, “Resistive state of a thin superconducting strip with an engineered central defect,” European Physical Journal B, no. 92, p. 143, 2019, doi: https://doi.org/10.1140/epjb/e2019-100082-y