Published 2023-04-06
Keywords
- Ginzburg-Landau,
- mesoscopic,
- superconductor,
- kinematic vortices
How to Cite
Copyright (c) 2023 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
In this contribution we use the time-dependent Ginzburg-Landau theory in the presence of currents and at zero magnetic fields, to investigate the kinematic vortices dynamics in a mesoscopic superconducting sheet with a thin central pillar. Our study covers two cases: (a) a central pillar whose height, simulated via T>1;0 parameter, is varied with a superconducting-vacuum interface throughout the whole sample. simulated via γ = 1;0 parameter; (b) a central pillar with a superconducting-superconducting boundary condition at the highest critical temperature Tc, (γ > 1;0); we also considered a homogeneous sample, that is, without a pillar T= 1;0. We analyze the influence of different boundary conditions on the kinematic vortex state and its effects on the magnetic response by analyzing the current-voltage and resistivity-current curves; the rate of annihilation of the vortex-antivortex pairs is also calculated as a function of the applied current for various boundary conditions. The results show that the critical currents and dynamics of kinematic vortex annihilation are highly dependent on pillar height and boundary conditions.
Downloads
References
- A. Andronov, I. Gordion, V. Kurin, I. Nefedov, I.Shereshevsky, “Kinematic vortices and phase slip lines in the dynamics of the resistive state of narrow superconductive thin film channels,” Physica C, no. 193, p. 213, 1993.
- A. G. Sivakov, A. M. Glukhov, A. N. Omelyanchouk, Y. Kovalv, P. Muller, A. V. Ustinov, “Josephson behavior of phase-slip lines in wide superconducting strips,” Phys. Rev. Lett., no. 91, p. 267001, 2003, doi: https://doi.org/10.1103/PhysRevLett.91.267001
- W. J. Skocpol, M. R. Beasley, M. Tinkham, “Self heating hotspots in superconducting thin film microbridges,” J. Appl. Phys., no. 45, p.4054, 1974, doi: https://doi.org/10.1063/1.1663912
- J. Barba-Ortega, E. Sardella, and R. Zadorosny, “Influence of the deGennes extrapolation parameter on the resistive state of a superconducting strip,” Physics Letters A, no. 382, p. 215, 2018, doi: https://doi.org/10.1016/j.physleta.2017.11.010
- G. R. Berdiyorov, X. H. Chao, F. M. Peeters, H. B. Wang, V. V. Moshchalkov, and B. Y. Zhu, “Magnetoresistance oscillations in superconducting strips: A Ginzburg-Landau study,” Physical Review B, no. 86, p. 224504, 2012, doi: https://doi.org/10.1103/PhysRevB.86.224504
- G. Berdiyorov, A. R. de C. Romaguera, M. V. Milosevic, M. M. Doria, L. Covaci, F. M. Peeters, “Dynamic and static phases of vortices under an applied drive in a superconducting stripe with an array of weak links,” Europhysics Journal B, no. 85, p. 130, 2012, doi: https://doi.org/10.1140/epjb/e2012-30013-7
- G. R. Berdiyorov, M. V. Milosevic, M. L. Latimer, Z. L. Xiao, W. K. Kwok, F. M. Peeters, “Large magnetoresistance oscillations in mesoscopic superconductors due to currentexcited moving vortices,” Physical Review Letters, no. 109, p. 057004, 2012, doi: https://doi.org/10.1103/PhysRevLett.109.057004
- A. Schimd, “A time dependent Ginzburg – Landau equation and its application to the problem of resistivity in the mixed state,” Physik der Kondensierten Materie, no. 5, p. 302, 1966, doi: https://doi.org/10.1007/BF02422669
- I. Petkovic, A. Lollo, L. I. Glazman, J. G. E.Harris, “Deterministic phase slips in mesoscopic superconducting rings,” Nature Communicatios, no. 7, p. 13551, 2016, doi: https://doi.org/10.1038/ncomms13551
- E. C. S. Duarte, E. Sardella, W. A. Ortiz, R. Zadorosny, “Dynamics and heat diffusion of abrikosovs vortex antivortex pairs during an annihilation process,” Journal of Physics: Condensed Matter, no. 29, p. 40, 2017, doi: https://doi.org/10.1088/1361-648X/aa81e6
- L. Rodrigues-Cadorim, A. de Oliveira Junior, E. Sardella, “Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-field,” Scientific Reports, no. 10, p. 18662, 2020, doi: https://doi.org/10.1038/s41598-020-75748-5
- A. Presotto, E. Sardella, A. Malvezzi, R. Zadorosny, “Dynamical regimes of kinematic vortices in the resistive state of a mesoscopic superconducting bridge,” Journal of Physics: Condensed Matter, no. 32, p. 435702, 2020, doi: https://doi.org/10.1088/1361-648X/aba5a3
- C. A. Aguirre, Q. Martins, J. Barba-Ortega, “Desarrollo analítico de las ecuaciones Ginzburg - Landau para películas delgadas superconductoras en presencia de corrientes,” Revista UIS Ingenierías, no. 18, p. 213, 2019, doi: https://doi.org/10.18273/revuin.v18n2-2019020
- C. A. Aguirre, M. R. Joya, J. Barba-Ortega, “Dimer structure as topological pinning center in a superconducting sample,” Revista UIS Ingenierias, no. 19, p. 119, 2020, doi: https://doi.org/10.18273/revuin.v19n1-2020011
- C. A. Aguirre, E. D. V. Nino, J. Barba-Ortega, “Estado de veces en un cuadrado superconductor de dos-orbitales con condiciones de contorno mixtas,” Revista Ingenio, no. 15, p. 38, 2018, doi: https://doi.org/10.22463/issn.2011-642X
- J. B. Ortega, J. Faúndez-Chaura, M. R. Joya, “Curva voltaje-tiempo en un proceso aniquilación-creación de pares vórtice-antivórtice,” Revista Ingenio, no. 15, p. 31, 2018, doi: https://doi.org/10.22463/issn.2011-642X
- W. Wang, R. D-Mez, M. Wallin, J. Lidmar, E. Babaev, “Pinning effects in a two-dimensional cluster glass,” Physical Review B, no. 104, p. 144206, 2021, doi: https://doi.org/10.1103/PhysRevB.104.144206
- A. Samoilenka, E. Babaev, “Microscopic derivation of superconductor-insulator boundary conditions for Ginzburg-Landau theory revisited: Enhanced superconductivity at boundaries with and without magnetic field,” Physical Review B, no. 103, p. 224516, 2021, doi: https://doi.org/10.1103/PhysRevB.103.224516
- A. Benfenati, A. Samoilenka, E. Babaev, “Boundary effects in two-band superconductors,” Physical Review B, no. 103, p. 224516, 2021, doi: https://doi.org/10.1103/PhysRevB.103.144512
- V. Grinenko, D. Weston, F. Caglieris, C. Wuttke, C. Hess, T. Gottschall, I. Maccari, D. Gorbunov, S. Zherlitsyn, J. Wosnitza, A. Rydh, K. Kihou, C. H. Lee, R. Sarkar, S. Dengre, J. Garaud, A. Charnukha, R.Huhne, K. Nielsch, B. Buchner, H. Klauss, E. Babaev, “State with spontaneously broken time-reversal symmetry above the superconducting phase transition,” Nature Physics, no. 17, p. 1254, 2021, doi: https://doi.org/10.1038/s41567-021-01350-9
- W. D. Gropp, H. Kaper, G. K. Leaf, D. M. Levine, Palumbo, V. M. V. M. Vinokur, “Numerical simulation of vortex dynamics in type-II superconductors,” Journal of Computational Physics, vol. 123, p. 254, 1996, doi: https://doi.org/10.1006/jcph.1996.0022
- G. C. Buscaglia, C. Bolech, A. López, Connectivity and Superconductivity. Berger, J. and Rubinstein, J. Springer, Berlin, 2000.
- L. Kramer, R. J. Watts-Tobin, “Theory of dissipative current-carrying states in superconducting filaments,” Phisical Review Letteres, no. 40, p. 1041, 1978, doi: https://doi.org/10.1103/PhysRevLett.40.1041
- Q. Du, M. Gunzburger, J. S. Peterson, “A model for superconducting thin films having variable thickness,” Physica D: Nonlinear Phenomena, vol. 69, no. 3-4, 1993, doi: https://doi.org/10.1016/0167-2789(93)90089-J
- Q. Du, M. Gunzburger, J. S. Peterson, “Modeling and analysis of a periodic Ginzburg-Landau model for type-ii superconductors,” SIAM Journal on Applied Mathematics, vol. 53 no. 3, pp. 689-717, 1993, doi: https://www.jstor.org/stable/2102434
- J. Barba-Ortega, M. R. Joya, E. Sardella, “Resistive state of a thin superconducting strip with an engineered central defect,” European Physical Journal B, no. 92, p. 143, 2019, doi: https://doi.org/10.1140/epjb/e2019-100082-y