Vol. 17 No. 2 (2018): Revista UIS Ingenierías
Articles

Sensitivity analysis of a member under compression via Monte Carlo method

Javier Martínez
Universidad Simón Bolívar
Euro Casanova
Universidad Simón Bolívar
Carlos Graciano
Universidad Nacional de Colombia
Octavio Andrés González-Estrada
Universidad Industrial de Santander

Published 2018-06-12

Keywords

  • Buckling load,
  • finite element analysis,
  • stochastic modelling,
  • modal analysis

How to Cite

Martínez, J., Casanova, E., Graciano, C., & González-Estrada, O. A. (2018). Sensitivity analysis of a member under compression via Monte Carlo method. Revista UIS Ingenierías, 17(2), 179–184. https://doi.org/10.18273/revuin.v17n2-2018016

Abstract

The present work studies the application of a probabilistic methodology in the sensitivity analysis of a steel column to identify the dominant parameters in its load capacity. Monte Carlo type simulations, in combination with the finite element method, was carried out to achieve the proposed objective. The geometric nonlinearity in the model was considered in order to reflect large deflections and initial geometric imperfections. The results show that the sensitivity of the column to a specific input parameter depends on the slenderness ratio and, hence, the column will be more sensitive to one parameter or another depending on that relationship.

Downloads

Download data is not yet available.

References

Elishakoff Isaac, Probabilistic theory of structures. Dover Publications, New York; 1999.

Dudzik A, Radoń U. The evaluation of algorithms for determination of the reliability index. Archives of Civil Engineering. 2015 Sep 1;61(3):133-47.

Groof VD, Oberguggenberger M. Assessing random field models in finite element analysis: a case study. International Journal of Reliability and Safety. 2014;8(2-4):117-34.

Gupta A, Arun CO. Stochastic meshfree method for elastic buckling analysis of columns. Computers & Structures. 2018 Jan 1;194:32-47.

A. Asdrúbal, C. Graciano, O.A. González-Estrada, “Resistencia de vigas esbeltas de acero inoxidable bajo cargas concentradas mediante elementos finitos,” Rev, UIS Ing., vol. 16, no. 2, pp. 61-70, 2017. Doi: https://doi.org/10.18273/revuin.v16n2-2017006.

H. G. Sánchez, J. Uscátegui, S. Gómez, “Metodología para la detección de fallas en una estructura entramada metálica empleando las técnicas de análisis modal y PSO,” Rev. UIS Ing., vol. 16, no. 2, pp. 43-50, 2017. Doi: https://doi.org/10.18273/revuin.v16n2-2017004

ANSYS user’s manual for revision 10. Swanson Analysis, Inc; 2005.

Riks E, An incremental approach to the solution of snapping and buckling problems. International Journal of Solids and Structures 1978;15:529-51.

Ziemian R. D., Guide to stability design criteria for metal structures, Sixth edition. Column research council, John Wiley and Sons, New York;2010.

Shigley J, Mischke C, Standard handbook of machine design. Second edition. McGraw-Hill, New York; 1996.

American Iron and Steel Institute (AISI), Products Manual, New York; 1979.

A. Ramirez-Matheus, M. Díaz-Rodríguez, O. A. González-Estrada, “Estrategia de optimización para la síntesis dimensional de un robot paralelo 5R para una aplicación de mesa de corte,” Rev. UIS Ing., vol. 16, no. 2, pp. 197-206, 2017. Doi: https://doi.org/10.18273/revuin.v16n2-201701

M. Papadrakakis, V. Papadopoulos, Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation, Comput. Methods Appl. Mech. Engrg. 134 (1996) 325–340.