Vol. 18 No. 1 (2019): Revista UIS Ingenierías
Articles

Fatigue crack growth numerical analysis of CPVC: effect of temperature and load frequency

Eudi Blanco
Universidad Central de Venezuela
Manuel Martínez
Universidad Industrial de Santander
Jeanette González
Universidad Simón Bolívar
Marco González
Universidad Simón Bolívar

Published 2019-01-02

Keywords

  • CPVC,
  • fracture mechanic,
  • fatigue crack growth,
  • load frequency and temperature,
  • the boundary element method.

How to Cite

Blanco, E., Martínez, M., González, J., & González, M. (2019). Fatigue crack growth numerical analysis of CPVC: effect of temperature and load frequency. Revista UIS Ingenierías, 18(1), 177–186. https://doi.org/10.18273/revuin.v18n1-2019016

Abstract

An analysis of combined effect of temperature and load frequency on the fatigue crack growth rate and cracking velocity for Chlorinated Polyvinyl Chloride (CPVC) is presented in this paper. CPVC is a thermoplastic material used for piping systems where higher temperature and chemical resistance are important, becoming a good alternative to metals. The Dual Boundary Element Method (DBEM) is used to determine three dimensional states of stresses and strains at each increment of crack. Stress intensity factors at the crack tip are determined using the J-integral, and the crack growth direction is defined by the maximum principal stress criteria. A mathematical model proposed by Kim & Wang in 1994 based on experimental results is applied to predict cracking velocity. In this work, a specimen with lateral crack using temperature values between 23 and 70 ºC and frequencies between 0.1 and 10 Hz is evaluated. The results show that cracking velocity increases with temperature increase and with frequency decrease. These results are compared to Paris & Erdogan model showing good agreement which reveals that DBEM could be an accurate tool to investigate the prediction of crack growth in polymers.

Downloads

Download data is not yet available.

References

A. F. Liu, Mechanics and Mechanisms of Fracture: An Introduction. ASM International, 2005.

H.-S. Kim y Y.-W. Mai, “Effect of temperature on fatigue crack growth in unplasticized polyvinyl chloride,” J. Mater. Sci., vol. 28, no. 20, pp. 5479 -5485, 1993. doi: 10.1007/BF00367818

M. Irfan-ul-Haq y N. Merah, “Effect of Temperature on Fatigue Crack Growth in CPVC,” J. Press. Vessel Technol., vol. 125, no. 1, pp. 71-77, 2003. doi: 10.1115/1.1523070

R. W. Hertzberg, J. A. Manson, y M. Skibo, “Frequency sensitivity of fatigue processes in polymeric solids,” Polym. Eng. Sci., vol. 15, no. 4, pp. 252–260, 1975. doi: 10.1002/pen.760150404

H. S. Kim y X. M. Wang, “Temperature and frequency effects on fatigue crack growth of uPVC,” J. Mater. Sci., vol. 29, no. 12, pp. 3209–3214, 1994. doi: 10.1007/BF00356664

Parson M, Stepanov EV, Hiltner A, Baer E., “Fatigue and Creep Crack Propagation Kinetics in PVC Pipe Material,” in The Annual Technical Conference (ANTEC) of the Society of Plastics Engineers, 2002, pp. 426-430.

F. Saghir, N. Merah, Z. Khan, y A. Bazoune, “Modeling the combined effects of temperature and frequency on fatigue crack growth of chlorinated polyvinyl chloride (CPVC),” J. Mater. Process. Technol., vol. 164–165, pp. 1550–1553, 2005. doi: 10.1016/j.jmatprotec.2005.02.206

M.H. Aliabadi, The Boundary Element Method, Applications in Solids and Structures Vol. 2. John Wiley & Sons, 2002.

J. Mackerle, “FEM and BEM in the context of information retrieval,” Comput. Struct., vol. 80, no. 20-21, pp. 1595-1604, 2002. doi: 10.1016/S0045-7949(02)00114-1

T. A. Cruse, “Numerical solutions in three dimensional elastostatics,” Int. J. Solids Struct., vol. 5, no. 12, pp. 1259–1274, 1969. doi: 10.1016/0020-7683(69)90071-7

T. A. Cruse, “Numerical Evaluation of Elastic Stress Intensity Factors by the Boundary Integral Equation Method, The Surface Crack: Physical Properties and Computational Solutions,” J.L. Swedlow (Ed.), ASME, New York, 1972, pp. 153-170

T. A. Cruse, “BIE fracture mechanics analysis: 25 years of developments,” Comput. Mech., vol. 18, no. 1, pp. 1–11, 1996. doi: 10.1007/BF00384172

A. Portela, M. H. Aliabadi, y D. P. Rooke, “The dual boundary element method: Effective implementation for crack problems,” Int. J. Numer. Methods Eng., vol. 33, no. 6, pp. 1269–1287, 1992. doi: 10.1002/nme.1620330611

Y. Mi y M. H. Aliabadi, “Dual boundary element method for three-dimensional fracture mechanics analysis,” Eng. Anal. Bound. Elem., vol. 10, no. 2, pp. 161–171, 1992. doi: 10.1016/0955-7997(92)90047-B

D. N. Dell’Erba, Thermoelastic fracture mechanics using boundary elements. WIT Press, 2002.

R. Balderrama, “Implementación de la Integral J de Dominio para el Análisis Tridimensional de Grietas en Problemas Termoelásticos utilizando el Método de Elementos de Contorno”, trabajo de fin de maestría, Universidad Central de Venezuela, Caracas, Venezuela, 2004.

W. H. Gerstle, “Finite and Boundary Element Modelling of Crack Propagation in Two and Three Dimensions using Interactive Computer Graphics”, tesis doctoral, Cornell University, New York, 1985.

P.C. Paris, F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” J. Basic Eng., vol. 85, no. 4, pp. 528-533, 1963. doi: 10.1115/1.3656900

N. Merah, F. Saghir, Z. Khan, y A. Bazoune, “A study of frequency and temperature effects on fatigue crack growth resistance of CPVC,” Eng. Fract. Mech., vol. 72, no. 11, pp. 1691–1701, 2005. doi: 10.1016/j.engfracmech.2004.12.002