Micromechanical approach for the analysis of wave propagation in particulate composites
Published 2019-01-23
Keywords
- wave propagation,
- self-consistent,
- viscoelastic composites,
- particulate composites
How to Cite
Abstract
Laser ultrasonic non-destructive testing is widely used for the inspection of mechanical structures. This method uses the propagation of ultrasonic guided waves (UGW) in the media. It has been demonstrated that the addition of a thin composite layer between the laser source and the structure for inspection is necessary. Consequently, this composite is an optoacoustic transducer composed of an absorption material as carbon for inclusions and an expanding material as an elastomer for the matrix. Thus, optimal fabrication of this composite should enable the amplification of the signal for inspection. Indeed, experimental research has demonstrated that variation in the volume fraction of carbon inclusions, their shape and the nature of the matrix affect the amplification of the signal directly. The aim of this study is to analyse the wave propagation in particulate viscoelastic composites by a dynamic self-consistent approach.
Downloads
References
A. Ayestarán, C. Graciano, and O. A. González-Estrada, “Resistencia de vigas esbeltas de acero inoxidable bajo cargas concentradas mediante análisis por elementos finitos,” Rev. UIS Ing., vol. 16, no. 2, pp. 61–70, Sep. 2017. doi:https://doi.org/10.18273/revuin.v16n2-2017006.
J. E. Quiroga Mendez, O. A. González-Estrada, and Y. R. Ordoñez, “Stress Sensitivity of the T(0,1) Mode Velocity or Cylindrical Waveguides,” Key Eng. Mater., vol. 774, pp. 453–460, 2018. doi:10.4028/www.scientific.net/KEM.774.453.
A. Sarrafzadeh, R. J. Churchill, and M. G. Niimura, “Laser Generated Ultrasound,” in Acousto-Ultrasonics, J. C. Duke, Ed. Boston, MA: Springer US, 1988, pp. 201–207.
Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett., vol. 89, no. 9, p. 093901, Aug. 2006. doi:10.1063/1.2344929.
H. W. Baac et al., “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep., vol. 2, no. 1, p. 989, Dec. 2012. doi:10.1038/srep00989.
E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 48, no. 6, pp. 1669–1680, 2001. doi:10.1109/58.971720.
B.-Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang, and X. Jiang, “A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film,” Appl. Phys. Lett., vol. 106, no. 2, p. 021902, Jan. 2015. doi:10.1063/1.4905659.
Y. Tian, N. Wu, K. Sun, X. Zou, and X. Wang, “Numerical simulation of fiber-optic photoacoustic generator using nanocomposite material,” J. Comput. Acoust., vol. 21, no. 02, p. 1350002, Jun. 2013. doi:10.1142/S0218396X13500021.
W. Huang, W.-Y. Chang, J. Kim, S. Li, S. Huang, and X. Jiang, “A novel laser ultrasound transducer using candle soot carbon nanoparticles,” IEEE Trans. Nanotechnol., vol. 15, no. 3, pp. 395–401, May 2016. doi:10.1109/TNANO.2016.2536739.
W.-Y. Chang, W. Huang, J. Kim, S. Li, and X. Jiang, “Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers,” Appl. Phys. Lett., vol. 107, no. 16, p. 161903, Oct. 2015. doi:10.1063/1.4934587.
J. D. Achenbach, Wave propagation in elastic solids, 1st ed. New York: American Elsevier Publishing Company, 1973.
R. Hill, “Continuum micro-mechanics of elastoplastic polycrystals,” J. Mech. Phys. Solids, vol. 13, no. 2, pp. 89–101, Apr. 1965. doi:10.1016/0022-5096(65)90023-2.
F. J. Sabina and J. R. Willis, “A simple self-consistent analysis of wave propagation in particulate composites,” Wave Motion, vol. 10, no. 2, pp. 127–142, Apr. 1988. doi:10.1016/0165-2125(88)90038-8.
V. K. Kinra, M. S. Petraitis, and S. K. Datta, “Ultrasonic wave propagation in a random particulate composite,” Int. J. Solids Struct., vol. 16, no. 4, pp. 301–312, 1980. doi:10.1016/0020-7683(80)90083-9.
S. Biwa, S. Idekoba, and N. Ohno, “Wave attenuation in particulate polymer composites: independent scattering/absorption analysis and comparison to measurements,” Mech. Mater., vol. 34, no. 10, pp. 671–682, Oct. 2002. doi:10.1016/S0167-6636(02)00167-9.
R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys. Solids, vol. 13, no. 4, pp. 213–222, Aug. 1965. doi:10.1016/0022-5096(65)90010-4.
J. R. Willis, “Polarization approach to the scattering of elastic waves—I. Scattering by a single inclusion,” J. Mech. Phys. Solids, vol. 28, no. 5–6, pp. 287–305, Dec. 1980. doi:10.1016/0022-5096(80)90021-6.
G. Caviglia and A. Morro, “On the modelling of dissipative solids,” Meccanica, vol. 25, no. 2, pp. 124–127, Jun. 1990, doi:10.1007/BF01566213.
A. Cafarelli, A. Verbeni, A. Poliziani, P. Dario, A. Menciassi, and L. Ricotti, “Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures,” Acta Biomater., vol. 49, pp. 368–378, Feb. 2017, doi:10.1016/j.actbio.2016.11.049.
V. K. Kinra, E. Ker, and S. K. Datta, “Influence of particle resonance on wave propagation in a random particulate composite,” Mech. Res. Commun., vol. 9, no. 2, pp. 109–114, Mar. 1982, doi:10.1016/0093-6413(82)90008-8.
J. R. Willis, “The nonlocal influence of density variations in a composite,” Int. J. Solids Struct., vol. 21, no. 7, pp. 805–817, 1985, doi:10.1016/0020-7683(85)90084-8.