Vol. 18 No. 4 (2019): Revista UIS Ingenierías
Articles

Electroless Nickel Phosphorous: a global vision

Nelson Gomes
Instituto Venezolano de Investigaciones Científicas
Octavio Andrés González-Estrada
Universidad Industrial de Santander
Alberto Pertuz-Comas
Universidad Industrial de Santander

Published 2019-09-19

Keywords

  • anticorrosive protection,
  • nickel phosphides,
  • heat treatment,
  • physicochemical properties

How to Cite

Gomes, N., González-Estrada, O. A., & Pertuz-Comas, A. (2019). Electroless Nickel Phosphorous: a global vision. Revista UIS Ingenierías, 18(4), 173–192. https://doi.org/10.18273/revuin.v18n4-2019016

Abstract

Electroless Nickel-Phosphorus (ENP) coating is a material used in industrial sectors such as automotive, aeronautics, petroleum and petrochemical, aerospace, among others; due to the great variety of properties it offers for the protection of metallic and non-metallic substrates, among which stand out its high resistance to corrosion and wear (abrasion, friction and erosion), in addition to its great hardness and lubricity, which make it highly competitive with other types of coatings such as chromium plating or electrodeposited nickel. In the present work, an extensive description of the ENP technique is presented, highlighting the different physicochemical properties exhibited by this coating.

Downloads

Download data is not yet available.

References

[1] R. C. Agarwala and V. Agarwala, “Electroless alloy / composite coatings,” Front. Mater. Sci., vol. 28, no. August, pp. 475–493, 2005.

[2] D. Barker, “Electroless deposition of metals,” Trans. Inst. Met. Finish., vol. 71, no. pt 3, pp. 121–124, 1993. doi:10.1080/00202967.1993.11871003.

[3] S. M. Mayanna, L. Ramesh, and B. S. Sheshadri, “Electroless nickel plating - Influence of mixed ligands,” Trans. Inst. Met. Finish., vol. 74, no. 2, pp. 66–68, 1996. doi:10.1080/00202967.1996.11871097.

[4] S. John, N. V Shanmugham, and B. Shenoi, “A Low-Temperature Autocatalytic(Electroless) Nickel Plating Process,” Met. Finish., vol. 80, no. 4, pp. 47–52, 1982.

[5] A. Wurtz, Recherches sur la constitution des acides du phosphore. Paris: Bachelier, 1846.

[6] P. Breteau, “Nickel deposited by reduction with hypophosphite,” Bull Soc Chem, vol. 9, p. 515, 1911.

[7] F. A. Roux, “Process of producing metallic deposits.,” U.S. Patent No. 1,207,218, Dec-1916.

[8] R. Scholder and H. Heckel, “Über Schwermetallphosphide. I. Mitteilung. Einwirkung von Hypophosphit auf Nickel‐und Kobaltsalze,” Zeitschrift für Anorg. und Allg. Chemie, vol. 198, no. 1, pp. 329–351, 1931.

[9] R. Scholder and H. L. Haken, “Einwirkung von Hypophosphit auf Nickel‐und Kobaltsalze (II. Mitteil. über Schwermethallphosphide),” Berichte der Dtsch. Chem. Gesellschaft (A B Ser., vol. 64, no. 11, pp. 2870–2877, 1931.

[10] C. Pall and L. Friederici, “Über die Einwirkung von Natriumhypophosphit auf wäßrige Nickelsalz‐Lösungen,” Berichte der Dtsch. Chem. Gesellschaft (A B Ser., vol. 64, no. 7, pp. 1766–1776, 1931.

[11] A. Brenner, “Nickel plating on steel by chemical reduction,” J. Res. NBS, vol. 37, pp. 31–34, 1946.

[12] R. Colin, “Electroless nickel plating, based on catalytic nickel precipitation according to the Kanigen process,” Galvanotech, vol. 57, no. 3, pp. 158–167, 1966.

[13] G. Gutzeit, “Catalytic nickel deposition from aqueous solution. I-IV,” Plat. Surf. Finish., vol. 46, pp. 1158–1164, 1959.

[14] P. Hersch, “Discussion on ‘Industrial Nickel Coating by Chemical Catalytic Reduction,’” Trans. Intstitute Met. Finish., vol. 33, pp. 417–418, 1955.

[15] R. M. Lukes, “The chemistry of the autocatalytic reduction of copper by alkaline formaldehyde,” Plating, vol. 51, no. 11, pp. 1066–1068, 1964.

[16] W. Machu and S. El-Gendi, “Einfluss von Schwermetallsalzen auf den Glanz und die Abscheidungsgeschwindichkeit bei der Stromlosen Abscheidung von Nickel,” Metalloberfläche, vol. 13, no. 4, p. 97, 1959.

[17] A. Brenner and G. E. Riddell, “Deposition of nickel and cobalt by chemical reduction,” J. Res. Nat. Bur. Stand, vol. 39, pp. 385–395, 1947.

[18] P. Cavallotti and G. Salvago, “Studies on chemical reduction of nickel and cobalt by hypophosphite. Pt. 2. Characteristics of the process,” Electrochim Met., vol. 3, no. 3, pp. 239–266, 1968.

[19] M. Saito, “Modeling the electro deposition process,” J. Met. Finish. Soc. Japan, vol. 17, p. 14, 1966.

[20] M. Paunovic, “Electrochemical aspects of electroless deposition of metals,” Plating, vol. 55, pp. 1161–1167, 1968.

[21] J. E. A. M. Van Den Meerakker, “On the mechanism of electroless plating.Ⅱ .One mechanism for different reductants,” J. Appl. Electrochem., vol. 11, pp. 395–400, 1981.

[22] R. L. Zeller III and L. Salvati Jr., “Effects of phosphorus on corrosion resistance of electroless nickel in 50% sodium hydroxide,” Corrosion, vol. 50, no. 6, pp. 457–467, 1994.

[23] C. Sun, H. Zeng, and J. L. Luo, “Unraveling the effects of CO 2 and H 2 S on the corrosion behavior of electroless Ni-P coating in CO 2 /H 2 S/Cl – environments at high temperature and high pressure,” Corros. Sci., vol. 148, no. December, pp. 317–330, 2019. doi:10.1016/j.corsci.2018.12.022.

[24] H. Y. Bin et al., “Study on Corrosion Resistance of Electroless Plating Ni-P Complex Coating,” in CORROSION 2005, 2005.

[25] T. S. N. Sankara Narayanan, I. Baskaran, K. Krishnaveni, and S. Parthiban, “Deposition of electroless Ni-P graded coatings and evaluation of their corrosion resistance,” Surf. Coatings Technol., vol. 200, no. 11, pp. 3438–3445, 2006. doi:10.1016/j.surfcoat.2004.10.014.

[26] T. S. N. S. Narayanan, K. Krishnaveni, and S. K. Seshadri, “Electroless Ni–P/Ni–B duplex coatings: preparation and evaluation of microhardness, wear and corrosion resistance,” Mater. Chem. Phys., vol. 82, no. 3, pp. 771–779, 2003.

[27] M. Sánchez, H. Orozco, and O. Pérez, “The Corrosion Behavior of Electroless Nickel-Coated Steel in Alkaline Solutions,” Port. Electrochim. Acta, vol. 27, no. 3, pp. 269–278, 2009, doi:10.4152/pea.200903269.

[28] M. Sánchez, H. Orozco, and O. Pérez, “Resistencia a la corrosión del acero revestido con Ni autocatalítico en medios alcalinos,” Port. Electrochim. Acta, vol. 27, no. 3, pp. 269–278, 2009.

[29] P. Nickel et al., “Standard Test Method for Copper-Accelerated Acetic Acid-Salt Spray ( Fog ) Testing ( CASS Test ) 1,” vol. 09, no. Reapproved 2014, pp. 1–4, 2015. doi:10.1520/B0368-09R14.The.

[30] I. Coatings and N. P. Chro-, “Standard Test Method for Corrosion Testing of Decorative Electrodeposited Coatings by the Corrodkote Procedure 1,” vol. 97, no. 3, pp. 24–26, 2011. doi:10.1520/B0380-97R08E01.2.

[31] American Society for Testing and Materials (ASTM), Standard Practice for Modified Salt Spray (Fog) Testing, ASTM G85 - 11. West Conshohocken, PA: American Society for Testing and Materials, 2013.

[32] American Society for Testing and Materials (ASTM), Standard Specification for Autocatalytic ( Electroless ) Nickel-Phosphorus Coatings on metal, ASTM B733-15. West Conshohocken, PA: American Society for Testing and Materials, 2011.

[33] D. Tachev, J. Georgieva, and S. Armyanov, “Magnetothermal study of nanocrystalline particle formation in amorphous electroless Ni-P and Ni-Me-P alloys,” Electrochim. Acta, vol. 47, no. 1, pp. 359–369, 2001. doi:10.1016/S0013-4686(01)00587-4.

[34] C. C. Hu and A. Bai, “Influences of the phosphorus content on physicochemical properties of nickel-phosphorus deposits,” Mater. Chem. Phys., vol. 77, no. 1, pp. 215–225, 2003. doi:10.1016/S0254-0584(01)00592-2.

[35] M. Schwartz, “Effect of Heat-Treatments on Magnetic Properties of Electroless Nickel Alloys,” J. Electrochem. Soc., vol. 123, no. 5, p. 606. 2006, doi:10.1149/1.2132894.

[36] T. Osaka, M. Usuda, I. Koiwa, and H. Sawai, “Effect of phosphorus content of the magnetic and electric properties of electroless Ni–P film after heat treatment,” Jpn. J. Appl. Phys., vol. 27, no. 10R, p. 1885, 1988.

[37] S. S. Tulsi, “Properties of electroless nickel,” Trans. IMF, vol. 64, no. 1, pp. 73–76, 1986.

[38] NACE International, Electroless Nickel Coatings, 6A287-HD1997. Houston: NACE International, 1997.

[39] M. Hansen, Der Aufbau der Zweistofflegierungen. Berlin, Heidelberg: Springer Berlin Heidelberg, 1936.

[40] M. Palaniappa and S. K. Seshadri, “Friction and wear behavior of electroless Ni–P and Ni–W–P alloy coatings,” Wear, vol. 265, no. 5–6, pp. 735–740, 2008.

[41] I. Apachitei and J. Duszczyk, “Autocatalytic nickel coatings on aluminium with improved abrasive wear resistance,” Surf. Coatings Technol., vol. 132, no. 1, pp. 89–98, 2000. doi:10.1016/S0257-8972(00)00864-1.

[42] A. Ramalho and J. C. Miranda, “Friction and wear of electroless NiP and NiP+ PTFE coatings,” Wear, vol. 259, no. 7–12, pp. 828–834, 2005.

[43] M. H. Staia, E. J. Castillo, E. S. Puchi, B. Lewis, and H. E. Hintermann, “Wear performance and mechanism of electroless Ni P coating,” Surf. coatings Technol., vol. 86, pp. 598–602, 1996.

[44] Q.-J. Zhou, J.-Q. Zhao, F. Nie, W.-Y. Chu, J.-X. Li, and L.-J. Qiao, “The effect of hydrogen on friction and wear of Ni–P electroless coating,” Wear, vol. 266, no. 7–8, pp. 810–813, 2009.

[45] Y. W. Riddle and C. E. Mccomas, “Advances in Electroless Nickel-Boron Coatings: Improvements to Lubricity and Wear Resistance on Surfaces of Automotive Components,” in SAE 2005 World Congress & Exhibition, 2005, p. No. 2005-01-0615.

[46] J. N. Balaraju, T. S. N. S. Narayanan, and S. K. Seshadri, “Electroless Ni–P composite coatings,” J. Appl. Electrochem., vol. 33, no. 9, pp. 807–816, 2003.

[47] K. Parker, “Hardness and wear resistance tests of electroless Ni deposits,” Plating, vol. 61, no. 9, pp. 834–841, 1974.

[48] K. G. Keong, W. Sha, and S. Malinov, “Hardness evolution of electroless nickel–phosphorus deposits with thermal processing,” Surf. Coatings Technol., vol. 168, no. 2–3, pp. 263–274, 2003.

[49] M. Palaniappa and S. K. Seshadri, “Hardness and structural correlation for electroless Ni alloy deposits,” J. Mater. Sci., vol. 42, no. 16, pp. 6600–6606, 2007.

[50] U. Gonser and H. G. Wagner, “Amorphous Metals,” Metall, vol. 36, no. 8, pp. 841–853, 1982.

[51] R. M. Allen and J. B. VanderSande, “The structure of electroless Ni-P films as a function of composition,” Scr. Met. States), vol. 16, no. 10, 1982.

[52] A. H. Graham, R. W. Lindsay, and H. J. Read, “The structure and mechanical properties of electroless nickel,” J. Electrochem. Soc., vol. 112, no. 4, pp. 401–413, 1965.

[53] A. W. Goldenstein, W. Rostoker, F. Schossberger, and G. Gutzeit, “Structure of Chemically Deposited Nickel,” J. Electrochem. Soc., vol. 104, no. 2, p. 104, 2007. doi:10.1149/1.2428503.

[54] J. P. Marton and M. Schlesinger, “The Nucleation, Growth, and Structure of Thin Ni-P Films,” J. Electrochem. Soc., vol. 115, no. 1, p. 16, 2007. doi:10.1149/1.2410991.

[55] K. Parker, “Effects of heat treatment on the properties of electroless nickel deposits,” Plat. Surf. Finish., vol. 68, no. 12, pp. 71–77, 1981.

[56] J. N. Balaraju, S. M. Jahan, A. Jain, and K. S. Rajam, “Structure and phase transformation behavior of electroless Ni-P alloys containing tin and tungsten,” J. Alloys Compd., vol. 436, no. 1–2, pp. 319–327, 2007. doi:10.1016/j.jallcom.2006.07.045.

[57] M. Sribalaji, P. Arunkumar, K. S. Babu, and A. K. Keshri, “Crystallization mechanism and corrosion property of electroless nickel phosphorus coating during intermediate temperature oxidation,” Appl. Surf. Sci., vol. 355, pp. 112–120, 2015. doi:10.1016/j.apsusc.2015.07.061.

[58] I. Bakonyi, A. Cziraki, I. Nagy, and M. Hosso, “Crystallization characteristics of electrodeposited amorphous Ni-P alloys,” Zeitschrift fuer Met. Res. Adv. Tech., vol. 77, no. 7, pp. 425–432, 1986.

[59] J. T. W. Jappes, B. Ramamoorthy, and P. K. Nair, “A study on the influence of process parameters on efficiency and crystallinity of electroless Ni-P deposits,” J. Mater. Process. Technol., vol. 169, no. 2, pp. 308–313, 2005. doi:10.1016/j.jmatprotec.2005.03.010.

[60] K. S. Rajam, I. Rajagopal, S. R. Rajagopalan, and B. Viswanathan, “DSC, X-ray and magnetic studies on electroless Ni-P films grown in alkaline ethanolamine baths,” Mater. Chem. Phys., vol. 33, no. 3–4, pp. 289–297, 1993. doi:10.1016/0254-0584(93)90077-Y.

[61] K. G. Keong, W. Sha, and S. Malinov, “Crystallisation kinetics and phase transformation behaviour of electroless nickel–phosphorus deposits with high phosphorus content,” J. Alloys Compd., vol. 334, no. 1–2, pp. 192–199, 2002.

[62] K. G. Keong, W. Sha, and S. Malinov, “Crystallization and phase transformation behaviour of electroless nickel-phosphorus deposits with low and medium phosphorus contents under continuous heating,” J. Mater. Sci., vol. 37, no. 20, pp. 4445–4450, 2002.
doi:10.1023/A:1020641611389.

[63] P. S. Kumar and P. K. Nair, “Studies on crystallization of electroless Ni P deposits,” J. Mater. Process. Technol., vol. 56, no. 1–4, pp. 511–520, 1996.

[64] K.-L. Lin, “The Crystallization of an Electroless Ni-P Deposit,” J. Electrochem. Soc., vol. 136, no. 12, p. 3803, 2006, doi:10.1149/1.2096552.

[65] K. H. Hur, J. H. Jeong, and D. N. Lee, “Microstructures and crystallization of electroless Ni-P deposits,” J. Mater. Sci., vol. 25, no. 5, pp. 2573–2584, 1990. doi:10.1007/BF00638061.

[66] S. B. Antonelli, T. L. Allen, D. C. Johnson, and V. M. Dubin, “Crystallization Behavior of Ni–P Alloy Films on Co and Cu Seed Layers,” J. Electrochem. Soc., vol. 152, no. 9, p. J120, 2006. doi:10.1149/1.1997175.

[67] H. Wiegand and K. Schwitzgebel, “Internal stresses crystallite sizes, and textures in electro- and chemically deposited nickel and their correlation with mechanical and technical properties,” Metall, vol. 21, no. 10, pp. 1024–1038, 1967.

[68] H. Wiegand, G. Heinke, and K. Schwitzgebel, “Properties of electroless nickel deposits from hyposphosphite solutions,” Metalloberflache, vol. 22, no. 10, pp. 304–311, 1968.

[69] A. F. Bogenschutz, J. L. Jostan, and W. Mussinger, “Electroless nickel-phosphorous coatings. Pt. 2. Investigations on the clarification of the coating structure,” Galvanotechnik, vol. 60, no. 7, pp. 511–518, 1969.

[70] H. Kreye, H.-H. Muller, and T. H. Petzel, “Structure and Thermal Stability of Chemically Deposited Nickel--Phosphorus Coatings,” Galvanotechnik, vol. 77, no. 3, pp. 561–567, 1986.

[71] K. Stallmann, “Electrolessly Deposited Nickel Coatings: Production, Structure, Properties.--I,” Galvanotechnik, vol. 75, no. 2, pp. 142–149, 1984.

[72] G. K. Schwarz, “Modern Electroplating Processes,” Met. Loberfl., vol. 26, no. 10, pp. 395–402, 1972.

[73] R. C. Agarwala and S. Ray, “Variation of Structure in Electroless Ni‐P Films with Phosphorus Content.,” ChemInform, vol. 19, no. 40, p. no-no, 1988.

[74] R. . Duncan, “The Metallurgical Structure of Electroless Nickel Deposits: Effect on the Coating Properties,” Plat. Surf. Finish., vol. 83, no. 11, pp. 65–69, 1996.