Revista Integración, temas de matemáticas.
Vol. 38 No. 2 (2020): Revista integración, temas de matemáticas
Research and Innovation Articles

Inequalities for D−Synchronous Functions and Related Functionals

Silvestru Sever Dragomir
Victoria University, College of Engineering and Science
cover

Published 2020-11-20

Keywords

  • Synchronous Functions,
  • Lipschitzian functions,
  • Chebyshev inequality,
  • Cauchy-Bunyakovsky-Schwarz inequality

How to Cite

Dragomir, S. S. (2020). Inequalities for D−Synchronous Functions and Related Functionals. Revista Integración, Temas De matemáticas, 38(2), 119–132. https://doi.org/10.18273/revint.v38n2-2020005

Abstract

We introduce in this paper the concept of quadruple D−synchronous functions which generalizes the concept of a pair of synchronous functions, we establish an inequality similar to Chebyshev inequality and we also provide some Cauchy-Bunyakovsky-Schwarz type inequalities for a functional associated with this quadruple. Some applications for univariate functions of real variable are given. Discrete inequalities are also stated.

Downloads

Download data is not yet available.

References

Cerone P. and Dragomir S.S., “A refinement of the Grüss inequality and applications”, Tamkang J. Math. 38 (2007), No. 1, 37-49. doi: 10.5556/j.tkjm.38.2007.92.

Dragomir S.S., “A counterpart of Schwarz’s inequality in inner product spaces”. arXiv: math/0305373.

Dragomir S.S., “A generalization of the Cassels and Greub-Reinboldt inequalities in inner product spaces”. arXiv: math/0306352.

Dragomir S.S., Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, Nova Science Publishers Inc, New York, 2005.

Dragomir S.S., “Reverses of Schwarz inequality in inner product spaces with applications”, Math. Nachr. 288 (2015), No. 7, 730-742. doi: 10.1002/mana.201300100.

Izumino S., Mori H. and Seo Y., “On Ozeki’s inequality”, J. Inequal. Appl. 2 (1998), No. 3, 235-253. doi: 10.1155/S1025583498000149.