Revista Integración, temas de matemáticas.
Vol. 31 No. 1 (2013): Revista Integración, temas de matemáticas
Research and Innovation Articles

Pseudo-differential operators definedon Borel measures

Duván Cardona
Universidad del Valle

Published 2013-07-29

Keywords

  • Pseudo-differential operators,
  • Borel measures,
  • Radon-Nikodým Theorem,
  • Boundedness and compactness of operators,
  • Distributions, Ellipticoperators

How to Cite

Cardona, D. (2013). Pseudo-differential operators definedon Borel measures. Revista Integración, Temas De matemáticas, 31(1), 25–42. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/3381

Abstract

In this paper we introduce a type of pseudo-differential operators defined on Borel measures. Classically the definition of pseudo-differential operators extends the tempered distributions space, but in its representation does not intervene the Fourier analysis in measures spaces. The main objective is to define such operators at a different angle and establish boundedness results on suitable normed spaces, in addition to providing a connection withthe pseudo-differential operators theory with symbols in the classes Sm, defined on Rn and the torus Tn.

Downloads

Download data is not yet available.

References

[1] Ashiro R., Nagase M. and Vaillancourt R., “Pseudo-differential operators in Lp(Rn) spaces”,Cubo 6 (2004), no. 3, 91–129.

[2] Conway J., A Course in Functional Analysis, Springer-Verlag, New York, 1997.

[3] Calderón A. and Vaillancourt R., “On the boundedness of pseudo-differential operators”, J. Math. Soc. Japan 23 (1971), 374–378.

[4] Dieudonné J., “Recent development in the theory of linear partial differential equations”, Internat. J. Math. Math. Sci. 3 (1980), no. 1, 1–14.

[5] Duoandikoetxea J., Fourier Analysis, 29. American Mathematical Society, Providence, 2000.

[6] Guzmán M., “Representación de medidas vectoriales”, Rev. Soc. Colombiana de Mat. 44 (2010), no. 2, 129–147.

[7] Hörmander L., The Analysis of Linear Partial Differential Operators III, Springer-Verlag, Berlín, 1985.

[8] Hwang I., “The L2-boundedness of pseudo-differential operators”, Trans. Amer. Math. Soc. 302 (1987), no. 1, 55–76.

[9] Kohn J. and Nirenberg L., “An Algebra of pseudo-differential operators”, Comm. Pure Appl. Math. 18 (1965), 269–305.

[10] Molahajloo S., “Pseudo-differential Operators on Z”, Oper. Theory Adv. Appl. 205 (2010), no. 1, 213–221.

[11] Restrepo G., Teoría de la Integración, Universidad del Valle, Colombia, 2004.

[12] Rodriguez C., “P-Estimates for Operators on Zn”, J. Pseudo-Differ. Oper. Appl. 1 (2010), no. 2, 367–375.

[13] Ruzhansky M. and Turunen V., Pseudo-differential Operators and Symmetries: Background Analysis and Advanced Topics, Pseudo-Differential Operators. Theory and Applications 2, Birkhäüser-Verlag, Basel, 2010.

[14] Schwartz L., Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Oxford University Press, London, 1973.

[15] Stein E., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 1993.

[16] Stein E., Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, New Jersey, 1971.

[17] Taylor M., Partial differential equations III. Non linear equations, Springer-Verlag, New York, 2011.

[18] Wong M.W., An Introduction to pseudo-differential operators. World Scientific Publishing, New Jersey, 1991.